Log in

Ni-Zn supported defective carbon with multi-functional catalytic sites for Baeyer–Villiger reaction using air as oxidant

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of economic catalysts for aerobic oxidation procedure has attracted extensive attention. In this work, a novel Ni/Zn supported defective carbon with multi-functional catalytic sites was fabricated via a two-step pyrolysis-H2O2 treatment. The catalyst was applied to the Baeyer–Villiger (B–V) oxidation using ambient air as a green and safe oxidant. The catalyst with optimal Ni/Zn ratio of (2:1) delivers a high catalytic activity (> 92%) and perfect selectivity (> 99%) for the conversion of a wide range of substituted cyclic-ketones to the corresponding lactones. The characterization results have clarified that the H2O2 treatment leads to the formation of active N/O-group on the catalyst surface, which facilitates the adsorption of substrate/intermediate molecules and benefits the reaction. Moreover, the synergistic effect between multi-functional sites results in the buffering/stabilizing of free radicals, enhanced efficiency of oxygen insertion to form lactone. The design principle in this work is believed to shed light on the exploration of all-in-one solid catalyst for diverse oxidative reaction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chamas A, Moon H, Zheng J et al (2020) ACS Sus Chem Engin 8:3494. https://doi.org/10.1021/acssuschemeng.9b06635

    Article  CAS  Google Scholar 

  2. Wei R, Tiso T, Bertling J, O’Connor K, Blank LM, Bornscheuer UT (2020) Nat Catal 3:867. https://doi.org/10.1038/s41929-020-00521-w

    Article  CAS  Google Scholar 

  3. Meereboer KW, Misra M, Mohanty AK (2020) Green Chem 22:5519. https://doi.org/10.1039/d0gc01647k

    Article  CAS  Google Scholar 

  4. Filiciotto L, Rothenberg G (2021) Chemsuschem 14:56. https://doi.org/10.1002/cssc.202002044

    Article  CAS  Google Scholar 

  5. Uyanik M, Ishihara K (2013) ACS Catal 3:513. https://doi.org/10.1021/cs300821u

    Article  CAS  Google Scholar 

  6. Baeyer A, Villiger V (1899) Ber Dtsch Chem Ges 32:3625. https://doi.org/10.1002/cber.189903203151

    Article  Google Scholar 

  7. Renz M, Meunier B (1999) Eur J Organ Chem 1999:737. https://doi.org/10.1002/(SICI)1099-0690(199904)1999

    Article  Google Scholar 

  8. Brink GJ, Arends I, Sheldon RA (2004) Chem Rev 104:4105. https://doi.org/10.1021/cr030011l

    Article  CAS  Google Scholar 

  9. Liu C, Wen KG, Zeng XP, Peng YY (2020) Adv Syn Catal 362:1015. https://doi.org/10.1002/adsc.201901178

    Article  CAS  Google Scholar 

  10. Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW (2019) ACS Catal 2019:11207. https://doi.org/10.1021/acscatal.9b03396

    Article  CAS  Google Scholar 

  11. Markiton M, Boncel S, Janas D, Chrobok A (2016) ACS Sus Chem Engin 5:1685. https://doi.org/10.1021/acssuschemeng.6b02433

    Article  CAS  Google Scholar 

  12. Leisch H, Morley K, Lau PC (2011) Chem Rev 111:4165. https://doi.org/10.1021/cr1003437

    Article  CAS  Google Scholar 

  13. Jeong E-Y, Ansari MB, Park S-E (2011) ACS Catal 1:855. https://doi.org/10.1021/cs200163r

    Article  CAS  Google Scholar 

  14. Chen S, Zhou X, Li Y, Luo R, Ji H (2014) Chem Engin J 241:138. https://doi.org/10.1016/j.cej.2013.12.027

    Article  CAS  Google Scholar 

  15. Rahman S, Enjamuri N, Gomes R et al (2015) Appl Catal A: Gen 505:515. https://doi.org/10.1016/j.apcata.2015.03.014

    Article  CAS  Google Scholar 

  16. Tang Z, **ao J, Li F et al (2020) ACS Omega 5:10451. https://doi.org/10.1021/acsomega.0c00443

    Article  CAS  Google Scholar 

  17. **ao H, Shin H, Goddard WA 3rd (2018) Proc Natl Acad Sci USA 115:5872. https://doi.org/10.1073/pnas.1722034115

    Article  CAS  Google Scholar 

  18. ** Y, Huang S, Yue X, Du H, Shen PK (2018) ACS Catal 8:2359. https://doi.org/10.1021/acscatal.7b04226

    Article  CAS  Google Scholar 

  19. Zheng C, Chang S, Yang C et al (2018) Tetrahedron 74:2608. https://doi.org/10.1016/j.tet.2018.04.009

    Article  CAS  Google Scholar 

  20. Huo H, Wu L, Ma J et al (2016) ChemCatChem 8:779. https://doi.org/10.1002/cctc.201501107

    Article  CAS  Google Scholar 

  21. Liu Z, Zhou Z, Qin J, Liu G, Huang H, Wu W (2018) ChemistrySelect 3:6434. https://doi.org/10.1002/slct.201801247

    Article  CAS  Google Scholar 

  22. Zhou Z, Wang J, Qin J, Yu Y, Wu W (2017) J Porous Mater 25:835. https://doi.org/10.1007/s10934-017-0496-9

    Article  CAS  Google Scholar 

  23. Li Y-F, Guo M-Q, Yin S-F et al (2013) Carbon 55:269. https://doi.org/10.1016/j.carbon.2012.12.036

    Article  CAS  Google Scholar 

  24. Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto M-a (2013) Catalysis by carbon materials for the aerobic baeyer-villiger oxidation in the presence of aldehydes. ACS Catal 3(2):230–236

    Article  CAS  Google Scholar 

  25. Chen S-Y, Zhou X-T, Wang J-X et al (2017) Mol Catal 438:152. https://doi.org/10.1016/j.mcat.2017.06.001

    Article  CAS  Google Scholar 

  26. Wei Z, Wang J, Mao S et al (2015) ACS Catal 5:4783. https://doi.org/10.1021/acscatal.5b00737

    Article  CAS  Google Scholar 

  27. Hu M, Reboul J, Furukawa S et al (2012) J Am Chem Soc 134:2864. https://doi.org/10.1021/ja208940u

    Article  CAS  Google Scholar 

  28. Zhong G, Li S, Xu S, Liao W, Fu X, Peng F (2018) ACS Sus Chem Engin 6:15108. https://doi.org/10.1021/acssuschemeng.8b03582

    Article  CAS  Google Scholar 

  29. Wang Y, Liu Y, Liu W, Chen H, Zhang G, Wang J (2015) Mater Lett 154:64. https://doi.org/10.1016/j.matlet.2015.04.073

    Article  CAS  Google Scholar 

  30. Wang X, Blechert S, Antonietti M (2012) ACS Catal 2:1596. https://doi.org/10.1021/cs300240x

    Article  CAS  Google Scholar 

  31. Zhang M, Gao B (2013) Chem Engin J 226:286. https://doi.org/10.1016/j.cej.2013.04.077

    Article  CAS  Google Scholar 

  32. Peng Y, Liu HW (2006) Ind Engin Chem Res 45:6483. https://doi.org/10.1021/ie0604627

    Article  CAS  Google Scholar 

  33. Donoeva B, Masoud N, de Jongh PE (2017) ACS Catal 7:4581. https://doi.org/10.1021/acscatal.7b00829

    Article  CAS  Google Scholar 

  34. Yang X, Wan Y, Zheng Y et al (2019) Chem Engin J 366:608. https://doi.org/10.1016/j.cej.2019.02.119

    Article  CAS  Google Scholar 

  35. **a J, He G, Zhang L, Sun X, Wang X (2016) Appl Catal B: Environ 180:408. https://doi.org/10.1016/j.apcatb.2015.06.043

    Article  CAS  Google Scholar 

  36. Wang Y, Ren N, ** J et al (2021) ACS ES&T Engin 1:32. https://doi.org/10.1021/acsestengg.0c00004

    Article  CAS  Google Scholar 

  37. Zhang X, Yang H, Yang G, Li S, Wang X, Ma J (2018) ACS Sus Chem & Engin 6:5868. https://doi.org/10.1021/acssuschemeng.7b04167

    Article  CAS  Google Scholar 

  38. Sun M, Liu H-H, Tao X-F, Zhai L-F, Wang S (2021) ACS ES&T Engin 1:173. https://doi.org/10.1021/acsestengg.0c00036

    Article  CAS  Google Scholar 

  39. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) Chem Comm 48:12017. https://doi.org/10.1039/C2CC35862J

    Article  CAS  Google Scholar 

  40. Wan X, Zhou C, Chen J et al (2014) ACS Catal 4:2175. https://doi.org/10.1021/cs5003096

    Article  CAS  Google Scholar 

  41. He L, Weniger F, Neumann H, Beller M (2016) Angew Chem Int Ed 55:12582. https://doi.org/10.1002/anie.201603198

    Article  CAS  Google Scholar 

  42. Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) ACS Catal 7:8090. https://doi.org/10.1021/acscatal.7b02335

    Article  CAS  Google Scholar 

  43. Deng H, Li Q, Liu J, Wang F (2017) Carbon 112:219. https://doi.org/10.1016/j.carbon.2016.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21773195). Y.S. Sun also thanks the financial support from Guangdong Basic and Applied Basic Research Foundation (2020A1515110904), State Key Laboratory of Physical Chemistry of Solid Surfaces, **amen University and Nanqiang Young Top-notch Talent Fellowship from **amen University.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jianhui Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 783 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, B., Shi, K. et al. Ni-Zn supported defective carbon with multi-functional catalytic sites for Baeyer–Villiger reaction using air as oxidant. J Mater Sci 56, 14684–14699 (2021). https://doi.org/10.1007/s10853-021-06197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06197-2

Navigation