Log in

Nanoscale segregation mechanism of cation dopant at the matrix/oxide interface in oxide dispersion-strengthened alloys

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The current study has demonstrated that cation dopant segregation at matrix/oxide interface opened up a new route to refine and disperse secondary oxide particles in oxide dispersion-strengthened (ODS) alloys. Thus, a unified theory that explains the physical origins of this interfacial segregation phenomenon is needed for designing ODS alloys with excellent oxide dispersity and ensuing high performance. Here, taking W–Y2O3 system for example, we firstly assess the possible driving forces for cation dopant interfacial segregation based on the experimental observation from Sc3+-, La3+-, Ti4+-, Zr4+- and Hf4+-doped W–Y2O3 alloys. It was suggested that elastic energy, oxygen chemical potential gradient and interfacial energy reduction are three main driving forces for the cation dopant segregation at W/Y2O3 interface. Then, an analytical model was developed in this work to quantitatively calculate the contributions of these three factors to the total segregation energy. Finally, the coupled results are further validated with the density functional theory (DFT)-calculated total segregation energy, and the good consistency confirms again the underlying mechanism behind cation dopant segregation phenomenon in W-based ODS alloy. On this basis, it can be predicted that a chemically expanded lattice and a large oxygen affinity will promote dopant interfacial segregation and enable the microstructure of ODS alloys to be tailored desirably. More importantly, the results and analytical model in our work can provide theoretical guidance for choosing proper cation dopant for other ODS alloys and then enhancing their strength and ductility simultaneously. Besides, the high-temperature instability of secondary oxide particles under extreme working environment also can be solved easily using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim Y, Lee KH, Kim E-P, Cheong D-I, Hong SH (2009) Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater 27:842–846

    CAS  Google Scholar 

  2. Smid I, Akiba M, Vieider G, Plöchl L (1998) Development of tungsten armor and bonding to copper for plasma-interactive components. J Nucl Mater 258–263:160–172

    Google Scholar 

  3. Uytdenhouwen I, Decreton M, Hirai T, Linke J, Pintsuk G, Van Oost G (2007) Influence of recrystallization on thermal shock resistance of various tungsten grades. J Nucl Mater 363:1099–1103

    Google Scholar 

  4. Tan XY, Luo LM, Chen HY, Zhu XY, Zan X, Luo GN, Chen JL, Li P, Cheng JG, Liu DP, Wu YC (2015) Mechanical properties and microstructural change of W–Y2O3 alloy under helium irradiation. Sci Rep 5(1):1–18

    CAS  Google Scholar 

  5. Hu W, Dong Z, Wang H, Ahamad T, Ma Z (2021) Microstructure refinement and mechanical properties improvement in the W–Y2O3 alloys via optimized freeze-drying. Int J Refract Met H 95:05453

    Google Scholar 

  6. Hu W, Ma Q, Ma Z, Yu L, Huang Y, Wang Z, Liu Y (2019) Ultra-fine W–Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering. Tungsten 1:220–228

    Google Scholar 

  7. Hu ZP, Zhao YN, Guan K, Wang ZM, ZQ M (2020) Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: microstructure and cracking mechanism. Addit Manuf 36:101579

    CAS  Google Scholar 

  8. Hu WQ, Kong XW, Du ZF, Khan A, Ma ZQ (2020) Synthesis and characterization of nano TiC dispersed strengthening W alloys via freeze-drying. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.157774

    Article  Google Scholar 

  9. Liu N, Dong Z, Ma ZQ, Yu LM, Li C, Liu CX, Guo QY, Liu YC (2019) Eliminating bimodal structures of W–Y2O3 composite nanopowders synthesized by wet chemical method via controlling reaction conditions. J Alloys Compd 774:122–128

    CAS  Google Scholar 

  10. Dong Z, Hu W, Ma Z, Li C, Liu Y (2019) The synthesis of composite powder precursors via chemical processes for the sintering of oxide dispersion-strengthened alloys. Mater Chem Front 3:1952–1972

    CAS  Google Scholar 

  11. Dong Z, Ma Z, Dong J, Li C, Yu L, Liu C, Liu Y (2020) The simultaneous improvements of strength and ductility in W–Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering. Mater Sci Eng A 784:139329

    CAS  Google Scholar 

  12. Dong Z, Ma Z, Yu L, Liu Y (2020) Enhanced mechanical properties in oxide dispersion strengthened alloys achieved via interface segregation of cation dopants. Sci China Mater Accepted. https://doi.org/10.1007/s40843-020-1481-0

    Article  Google Scholar 

  13. Chen BA, Liu G, Wang RH, Zhang JY, Jiang L, Song JJ, Sun J (2013) Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys. Acta Mater 61:1676–1690

    CAS  Google Scholar 

  14. Zhao YN, Ma ZQ, Yu LM, Dong J, Liu YC (2021) The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure. J Mater Sci Technol 68:184–190

    Google Scholar 

  15. Chookajorn T, Schuh CA (2014) Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti. Acta Mater 73:128–138

    CAS  Google Scholar 

  16. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Sci 33:951–954

    Google Scholar 

  17. Park M, Chookajorn T, Schuh CA (2018) Nano-phase separation sintering in nanostructure-stable versus bulk-stable alloys. Acta Mater 145:123–133

    CAS  Google Scholar 

  18. Park M, Schuh CA (2015) Accelerated sintering in phase-separating nanostructured alloys. Nat Commun 6(1):1–6

    Google Scholar 

  19. Friedel J (2001) Electronic structure of primary solid solutions in metals. Adv Phys 50:539–595

    Google Scholar 

  20. Wynblatt P, Chatain D (2007) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans A 38A:438–439

    CAS  Google Scholar 

  21. Wynblatt P, Shi Z (2005) Relation between grain boundary segregation and grain boundary character in FCC alloys. J Mater Sci 40:2765–2773. https://doi.org/10.1007/s10853-005-2406-9

    Article  CAS  Google Scholar 

  22. Darling KA, VanLeeuwen BK, Semones JE, Koch CC, Scattergood RO, Kecskes LJ, Mathaudhu SN (2011) Stabilized nanocrystalline iron-based alloys: guiding efforts in alloy selection. Mater Sci Eng A 528:4365–4371

    Google Scholar 

  23. Dickey EC, Fan XD, Pennycook SJ (2001) Structure and chemistry of yttria-stabilized cubic-zirconia symmetric tilt grain boundaries. J Am Ceram Soc 84:1361–1368

    CAS  Google Scholar 

  24. Brown KR, Bonnell DA (1999) Segregation in yttrium aluminum garnet: I, experimental determination. J Am Ceram Soc 82:2423–2430

    CAS  Google Scholar 

  25. Brown KR, Bonnell DA (1999) Segregation in yttrium aluminum garnet: II, theoretical calculation. J Am Ceram Soc 82:2431–2441

    CAS  Google Scholar 

  26. Lee W, Han JW, Chen Y, Cai ZH, Yildiz B (2013) Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J Am Chem Soc 135:7909–7925

    CAS  Google Scholar 

  27. Li H, Dey S, Castro RHR (2018) Kinetics and thermodynamics of densification and grain growth: insights from lanthanum doped zirconia. Acta Mater 150:394–402

    CAS  Google Scholar 

  28. Wang QL, Lian G, Dickey EC (2004) Grain boundary segregation in yttrium-doped polycrystalline TiO2. Acta Mater 52:809–820

    CAS  Google Scholar 

  29. Dong Z, Liu N, Ma Z, Liu C, Guo Q, Yamauchi Y, Alamri HR, Alothman ZA, Hossain MSA, Liu Y (2017) Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W–Y2O3 alloy. Int J Refract Met Hard Mater 69:266–272

    CAS  Google Scholar 

  30. Liu N, Dong Z, Ma Z, Qian Z, Ma L, Yu L, Liu Y (2019) Influence of yttrium addition on the reduction property of tungsten oxide prepared via wet chemical method. Acta Metall Sin-Engl 33:275–280

    Google Scholar 

  31. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871

    Google Scholar 

  32. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138

    Google Scholar 

  33. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  34. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104

    Google Scholar 

  36. Togo A, Tanaka I (2005) First principles phonon calculations in materials science. Scripta Mater 108:1–5

    Google Scholar 

  37. Wynblatt P, Rohrer GS, Papillon F (2003) Grain boundary segregation in oxide ceramics. J Eur Ceram Soc 23:2841–2848

    CAS  Google Scholar 

  38. Lussier A, Dvorak J, Stadler S, Holroyd J, Liberati M, Arenholz E, Ogale SB, Wu T, Venkatesan T, Idzerda YU (2008) Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces. Thin Solid Films 516:880–884

    CAS  Google Scholar 

  39. Han JW, Kitchin JR, Sholl DS (2009) Step decoration of chiral metal surfaces. J Chem Phys 130:124710

    Google Scholar 

  40. Estrade S, Rebled JM, Arbiol J, Peiro F, Infante IC, Herranz G, Sanchez F, Fontcuberta J, Cordoba R, Mendis BG, Bleloch AL (2009) Effects of thickness on the cation segregation in epitaxial (001) and (110) La2/3Ca1/3MnO3 thin films. Appl Phys Lett 95:072507

    Google Scholar 

  41. Lee HB, Prinz FB, Cai W (2010) Atomistic simulations of surface segregation of defects in solid oxide electrolytes. Acta Mater 58:2197–2206

    CAS  Google Scholar 

  42. Lee W, Jung HJ, Lee MH, Kim YB, ParkInclair JSR, Prinz FB (2012) Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv Funct Mater 22:965–971

    CAS  Google Scholar 

  43. Friedel J (1954) Electronic structure of primary solid solutions in metals. Adv Phys 3:446–507

    Google Scholar 

  44. Shannon R (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Google Scholar 

  45. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Okano H, Watanabe H, Yoshida N, Torikai Y, Hatano Y, Takida T, Kato M, Ikegaya A, Ueda Y, Hatakeyama M, Shikama T (2014) Current status of nanostructured tungsten-based materials development. Phys Scr T 159:014032

    Google Scholar 

  46. Hu W, Dong Z, Yu L, Ma Z, Liu Y (2020) The synthesis of W–Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation. J Mater Sci Technol 36:84–90

    Google Scholar 

  47. Frenkel J (1947) Kinetic theory of liquids. Nat 159:317–318

    Google Scholar 

  48. Pint BA, Alexander KB (1998) Grain boundary segregation of cation dopants in α-Al2O3 scales. J Electrochem Soc 145:1819–1829

    CAS  Google Scholar 

  49. Pint BA, Garratt-Reed AJ, Hobbs LW (1998) Possible role of the oxygen potential gradient in enhancing diffusion of foreign ions on α–Al2O3 grain boundaries. J Am Ceram Soc 81:305–314

    CAS  Google Scholar 

  50. Jeurgens LPH, Wang ZM, Mittemeijer EJ (2009) Thermodynamics of reactions and phase transformations at interfaces and surfaces. Int J Mater Res 100:1281–1307

    CAS  Google Scholar 

  51. Reichel F, Jeurgens LPH, Mittemeijer EJ (2008) The thermodynamic stability of amorphous oxide overgrowths on metals. Acta Mater 56:659–674

    CAS  Google Scholar 

  52. Chase JMW, Davies CA, Downey JJR, Frurip DJ, McDonald RA, Syverud AN (1986) NIST-JANAF Thermochemical tables. American Institute of Physics, New York

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51822404) and the Science and Technology Program of Tian** (Grant No.19YFZCGX00790 and 18YFZCGX00070). This work is also supported by the Natural Science Foundation of Tian** (Grant No. 18JCYBJC17900) and the Seed Foundation of Tian** University (2018XRX-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongqing Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Ma, Z., Yu, L. et al. Nanoscale segregation mechanism of cation dopant at the matrix/oxide interface in oxide dispersion-strengthened alloys. J Mater Sci 56, 6251–6268 (2021). https://doi.org/10.1007/s10853-020-05701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05701-4

Navigation