Log in

Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Stress corrosion cracking in light water reactor is one of the most important factors threatening the safe operation of nuclear power plants. Due to the severity, generality and various safety and economic problems caused by this phenomenon, it is necessary to establish a model for predicting the stress corrosion cracking growth rates. This paper provides an overview of three main methods for predicting stress corrosion cracking growth rates in recent decades, i.e., empirical, deterministic and calculation methods, which are introduced in detail. Empirical models describe classical statistical analysis and emerging artificial neural network method, both of which are based on a large number of experimental test data mining. They are convenient and relatively accurate in predicting, but require extensive, time-consuming and expensive tests for different service environments. Deterministic models aim to establish a theoretical relationship between crack growth rate and various influencing parameters by studying the stress corrosion cracking mechanism. Many scholars have proposed different mechanisms to scientifically explain the stress corrosion cracking phenomenon and propose corresponding crack growth rate models. Calculation models reveal the mechanism of crack initiation and propagation in different layers of materials by means of finite element method based on fracture mechanics and multiscale method based on quantum mechanics. They provide new idea for future research on stress corrosion cracking and bridge the quantitative mechanism or model, but no specific stress corrosion cracking growth rate model is formed. The article concludes with the prospect, aim and direction for stress corrosion cracking mechanism and prediction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Andresen PL (2019) A brief history of environmental cracking in Hot Water. Corrosion 75(3):240–253

    Article  CAS  Google Scholar 

  2. Wang M, Song M, Lear CR, Was GS (2019) Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals. J Nucl Mater 515:52–70

    Article  CAS  Google Scholar 

  3. Ashour EA (2001) Crack growth rates of Inconel 600 in aqueous solutions at elevated temperature. J Mater Sci 36(3):685–692. https://doi.org/10.1023/A:1004884823922

    Article  CAS  Google Scholar 

  4. Chen K, Wang J, Du D, Andresen PL, Zhang L (2018) dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water. J Nucl Mater 503:13–21

    Article  CAS  Google Scholar 

  5. Shen Z, Meisner M, Arika K, Lozano-Perez S (2019) Mechanistic understanding of the temperature dependence of crack growth rate in alloy 600 and 316 stainless steel through high-resolution characterization. Acta Mater 165:73–86

    Article  CAS  Google Scholar 

  6. Rebak RB, Szklarska-Smialowska Z (1996) The mechanism of stress corrosion cracking of alloy 600 in high temperature water. Corros Sci 38(6):971–988

    Article  CAS  Google Scholar 

  7. Saito K, Kuniya J (2001) Mechanochemical model to predict stress corrosion crack growth of stainless steel in high temperature water. Corros Sci 43(9):1751–1766

    Article  CAS  Google Scholar 

  8. Hall MM (2009) Film rupture model for aqueous stress corrosion cracking under constant and variable stress intensity factor. Corros Sci 51(2):225–233

    Article  CAS  Google Scholar 

  9. Turnbull A, Wright L (2017) Modelling the electrochemical crack size effect on stress corrosion crack growth rate. Corros Sci 126:69–77

    Article  CAS  Google Scholar 

  10. Fekete B, Ai J, Yang J, Han JS, Maeng WY, Macdonald DD (2018) An advanced coupled environment fracture model for hydrogen-induced cracking in alloy 600 in PWR primary heat transport environment. Theor Appl Fract Mech 95:233–241

    Article  CAS  Google Scholar 

  11. Du D, Chen K, Yu L, Yu H, Lu H, Zhang L, Shi X, Xu X (2015) SCC crack growth rate of cold worked 316L stainless steel in PWR environment. J Nucl Mater 456:228–234

    Article  CAS  Google Scholar 

  12. Lim YS, Kim DJ, Kim SW, Kim HP (2019) Crack growth and cracking behavior of Alloy 600/182 and Alloy 690/152 welds in simulated PWR primary water. Nucl Eng Technol 51(1):228–237

    Article  CAS  Google Scholar 

  13. Materials Reliability Program (2002) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of thick-wall alloy 600 materials (MRP-55), EPRI, Palo Alto, CA: 1006695

  14. White GA, Hickling J, Mathews LK (2003) Crack growth rates for evaluating PWSCC of thick-wall alloy 600 material. In: Proceedings of the 11th international conference environmental degradation materials nuclear power systems-water reactors, ANS, pp 166–179

  15. Materials Reliability Program (2004) Crack growth rates for evaluating primary water stress corrosion cracking (PWSCC) of alloy 82, 182, and 132 welds (MRP-115), EPRI, Palo Alto, CA:1006696

  16. White GA, Nordmann NS, Hickling J, Harrington CD (2005) Development of crack growth rate disposition curves for primary water stress corrosion cracking (PWSCC) of Alloy 82, 182, and 132 Weldments. In: Proceedings of 12th international conference environmental degradation materials nuclear power systems-water reactors, TMS, pp 511–530

  17. Lu Z, Shoji T, Xue H, Fu C (2013) Deterministic formulation of the effect of stress intensity factor on PWSCC of Ni-base alloys and weld metals. J Pressure Vess-T ASME 135(2):021402-021402-9. https://doi.org/10.1115/1.4007471

  18. Materials Reliability Program (2017) Crack growth rates for PWSCC of alloy 690 and alloy 52, 152, and variants welds (MRP-386), EPRI, Palo Alto, CA:3002010756

  19. Materials Reliability Program (2017) Crack growth rates for evaluating PWSCC of alloy 600 materials and alloy 82, 182, and 132 welds (MRP-420), EPRI Palo Alto, CA:3002010758

  20. Scott PM (1991) An analysis of primary water stress corrosion cracking in PWR steam generators. In: Proceedings of the specialists meeting on operating experience with steam generators, Brussels, Belgium, pp 5–6

  21. Jenks AR, White GA, Crooker P (2017) Crack growth rates for evaluating PWSCC of thick-wall alloy 690 material and alloy 52, 152, and variant welds. In: ASME. Pressure vessels and pi** conference, volume 6B: materials and fabrication: V06BT06A012. https://doi.org/10.1115/pvp2017-65886

  22. Smets HMG, Bogaerts WFL (1992) SCC analysis of austenitic stainless steels in chloride-bearing water by neural network techniques. Corrosion 48(8):618–623

    Article  CAS  Google Scholar 

  23. Lu PC (1997) Using neural network techniques to predict crack growth rates of stress corrosion. Int J Mater Prod Technol 12:329–345

    CAS  Google Scholar 

  24. Kamrunnahar M, Urquidi-Macdonald M (2010) Prediction of corrosion behavior using neural network as a data mining tool. Corros Sci 52(3):669–677

    Article  CAS  Google Scholar 

  25. Kamrunnahar M, Urquidi-Macdonald M (2011) Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool. Corros Sci 53(3):961–967

    Article  CAS  Google Scholar 

  26. Shi J, Wang J, Macdonald DD (2014) Prediction of crack growth rate in type 304 stainless steel using artificial neural networks and the coupled environment fracture model. Corros Sci 89:69–80

    Article  CAS  Google Scholar 

  27. Shi J, Wang J, Macdonald DD (2015) Prediction of primary water stress corrosion crack growth rates in alloy 600 using artificial neural networks. Corros Sci 92:217–227

    Article  CAS  Google Scholar 

  28. Halama M, Kreislova K, Lysebettens JV (2011) Prediction of atmospheric corrosion of carbon steel using artificial neural network model in local geographical regions. Corrosion 67(6):065004-1–065004-6. https://doi.org/10.5006/1.3595099

    Article  Google Scholar 

  29. Li Y, Xu T, Wang S, Fekete B, Yang J, Yang J, Qiu J, Xu A, Wang J, Xu Y, Macdonald DD (2019) Modelling and analysis of the corrosion characteristics of ferritic-martensitic steels in supercritical water. Materials. https://doi.org/10.3390/ma12030409

    Article  Google Scholar 

  30. Hu Q, Liu Y, Zhang T, Geng S, Wang F (2019) Modeling the corrosion behavior of Ni–Cr–Mo–V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network. J Mater Sci Technol 35(1):168–175

    Article  Google Scholar 

  31. Lin YC, Fang X, Wang YP (2008) Prediction of metadynamic softening in a multi-pass hot deformed low alloy steel using artificial neural network. J Mater Sci 43(16):5508–5515. https://doi.org/10.1007/s10853-008-2832-6

    Article  CAS  Google Scholar 

  32. Malho Rodrigues A, Franceschi S, Perez E, Garrigues JC (2015) Formulation optimization for thermoplastic sizing polyetherimide dispersion by quantitative structure-property relationship: experiments and artificial neural networks. J Mater Sci 50(1):420–426. https://doi.org/10.1007/s10853-014-8601-9

    Article  CAS  Google Scholar 

  33. Shah M, Das SK (2018) An artificial neural network model to predict the Bainite plate thickness of nanostructured Bainitic steels using an efficient Network-Learning Algorithm. J Mater Eng Perform 27(11):5845–5855

    Article  CAS  Google Scholar 

  34. Sontag ED (1992) Feedback stabilization using two-hidden-layer nets. IEEE Trans Neural Netw 3(6):981–990

    Article  CAS  Google Scholar 

  35. Srinivasan S, Saghir MZ (2013) Modeling of thermotransport phenomenon in metal alloys using artificial neural networks. Appl Math Model 37(5):2850–2869

    Article  Google Scholar 

  36. Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2):190–198

    Article  Google Scholar 

  37. Ham FM, Kostanic I (2000) Principles of neurocomputing for science and engineering, 1st edn. McGraw-Hill, New York

    Google Scholar 

  38. Coskun MI, Karahan IH (2018) Modeling corrosion performance of the hydroxyapatite coated CoCrMo biomaterial alloys. J Alloys Comput 745:840–848

    Article  CAS  Google Scholar 

  39. Cottis RA, Li Q, Owen G, Gartland SJ, Helliwell IA, Turega M (1999) Neural network methods for corrosion data reduction. Mater Des 20(4):169–178

    Article  CAS  Google Scholar 

  40. Kumar G, Buchheit RG (2012) Use of artificial neural network models to predict coated component life from short-term electrochemical impedance spectroscopy measurements. Corrosion 64(3):241–254

    Article  Google Scholar 

  41. Cavanaugh MK, Buchheit RG, Birbilis N (2010) Modeling the environmental dependence of pit growth using neural network approaches. Corros Sci 52(9):3070–3077

    Article  CAS  Google Scholar 

  42. Ford FP, Emigh PW (1985) The prediction of the maximum corrosion fatigue crack propagation rate in the low alloy steel-de-oxygenated water system at 288°C. Corros Sci 25(8):673–692

    Article  CAS  Google Scholar 

  43. Andresen PL, Ford FP (1988) Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Mater Sci Eng A 103(1):167–184

    Article  Google Scholar 

  44. Logan HL (1952) Film-rupture mechanism of stress corrosion. J Res Natl Bur Stand 48:99–105

    Article  CAS  Google Scholar 

  45. Woodtli J, Kieselbach R (2000) Damage due to hydrogen embrittlement and stress corrosion cracking. Eng Fail Anal 7(6):427–450

    Article  CAS  Google Scholar 

  46. Scully JC (1968) The mechanical parameters of stress-corrosion cracking. Corros Sci 8(10):759–769

    Article  CAS  Google Scholar 

  47. Vermilyea DA (1972) A theory for the propagation of stress corrosion cracks in metals. J Electrochem Soc 119(4):405–407

    Article  CAS  Google Scholar 

  48. Parkins RN (1980) Predictive approaches to stress corrosion cracking failure. Corros Sci 20(2):147–166

    Article  CAS  Google Scholar 

  49. Parkins RN (1987) Current topics in corrosion: factors influencing stress corrosion crack growth kinetics. Corrosion 43(3):130–139

    Article  CAS  Google Scholar 

  50. Ford FP (1996) Quantitative prediction of environmentally assisted cracking. Corrosion 52:375–395

    Article  CAS  Google Scholar 

  51. Andresen PL (1988) Environmentally assisted growth rate response of nonsensitized AISI 316 grade stainless steels in high temperature water. Corrosion 44(7):450–460

    Article  CAS  Google Scholar 

  52. Ford FP (1988) Status of research on environmentally assisted cracking in LWR pressure vessel steels. J Press Vess-T ASME 110(2):113–128

    Article  CAS  Google Scholar 

  53. Andresen PL, Ford FP (1993) Use of fundamental modeling of environmental cracking for improved design and lifetime evaluation. J Press Vess-T ASME 115(4):353–358

    Article  Google Scholar 

  54. Andresen PL, Ford FP (1994) Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs. Int J Press Vessel Pip 59(1–3):61–70

    Article  Google Scholar 

  55. Shoji T, Lu Z, Murakami H (2010) Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics. Corros Sci 52(3):769–779

    Article  CAS  Google Scholar 

  56. Macdonald DD (1996) On the modeling of stress corrosion cracking in iron and nickel base alloys in high temperature aqueous environments. Corros Sci 38(6):1003–1010

    Article  CAS  Google Scholar 

  57. Gutman EM (2007) An inconsistency in “film rupture model” of stress corrosion cracking. Corros Sci 49(5):2289–2302

    Article  CAS  Google Scholar 

  58. Hall MM (2009) Critique of the Ford–Andresen film rupture model for aqueous stress corrosion cracking. Corros Sci 51(5):1103–1106

    Article  CAS  Google Scholar 

  59. Ford FP, Taylor DF, Andresen PL, Ballinger RG (1987) Corrosion-assisted cracking of stainless and low alloy steels in LWR environments. In: EPRI final report RP2006-6, Electric Power Research Institute

  60. Rice JR, Sorensen EP (1978) Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J Mech Phys Solids 26(3):163–186

    Article  Google Scholar 

  61. Rice JR, Drugan WJ, Sham TL (1980) Elastic–plastic analysis of growing cracks. In: Proceedings of the 12th national symposium on fracture mechanics. ASTM Special Technical Publication, Philadelphia, pp 189–221

  62. Congleton J, Shoji T, Parkins RN (1985) The stress corrosion cracking of reactor pressure vessel steel in high temperature water. Corros Sci 25(8):633–650

    Article  CAS  Google Scholar 

  63. Shoji T, Suzuki S, Ballinger RG (1995) Theoretical prediction of SCC growth behavior-threshold and plateau growth rate. In: Proceedings of the seventh international symposium on environmental degradation of materials in nuclear power systems, Breckinridge, pp 881–889

  64. Peng QJ, Kwon J, Shoji T (2004) Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water. J Nucl Mater 324:52–61

    Article  CAS  Google Scholar 

  65. Hutchinson JW (1968) Plastic stress and strain fields at a crack tip. J Mech Phys Solids 16(5):337–342

    Article  Google Scholar 

  66. Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16(1):1–12

    Article  Google Scholar 

  67. Gao Y, Hwang K (1981) Elastic plastic fields in steady crack growth in a strain hardening material. Geochem Int 50(50):330–343

    Google Scholar 

  68. Gao Y, Zhang X, Hwang K (1983) The asymptotic near-tip solution for mode-III crack in steady growth in power hardening media. Int J Fract 21(4):301–317

    Article  Google Scholar 

  69. Gerberich W, Davidson DL, Kaczorowski M (1990) Experimental and theoretical strain distributions for stationary and growing cracks. J Mech Phys Solids 38(1):87–113

    Article  Google Scholar 

  70. Fan TY, Sutton MA, Zhang LX (1997) Plane stress steady crack growth in a power-law hardening material. Int J Fract 86(4):327–341

    Article  Google Scholar 

  71. Hall M (2008) An alternative to the Shoji crack tip strain rate equation. Corros Sci 50(10):2902–2905

    Article  CAS  Google Scholar 

  72. Koshiishi M, Hashimoto T, Obata R (2017) Application of the FRI crack growth model for neutron-irradiated stainless steels in high-temperature water of a boiling water reactor environment. Corros Sci 123:178–288

    Article  CAS  Google Scholar 

  73. MacDonald DD, Urquidi-MacDonald M (1991) A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments. Corros Sci 32:51–81

    Article  CAS  Google Scholar 

  74. Macdonald DD, Lu PC, Urquidi-Macdonald M, Yeh TK (1996) Theoretical estimation of crack growth rates in type 304 stainless steel in boiling-water reactor coolant environments. Corrosion 52(10):768–785

    Article  CAS  Google Scholar 

  75. Vankeerberghen M, Macdonald DD (2002) Predicting crack growth rate vs. temperature behaviour of type 304 stainless steel in dilute sulphuric acid solutions. Corros Sci 44(7):1425–1441

    Article  CAS  Google Scholar 

  76. Lee SK, Lv P, Macdonald DD (2013) Customization of the CEFM for predicting stress corrosion cracking in lightly sensitized Al-Mg alloys in marine applications. J Solid State Electrochem 17(8):2319–2332

    Article  CAS  Google Scholar 

  77. Liu S, Macdonald DD (2002) Fracture of AISI 4340 steel in concentrated sodium hydroxide solution. Corrosion 58(10):835–845

    Article  CAS  Google Scholar 

  78. Maeng WY, Macdonald DD (2008) The effect of acetic acid on the stress corrosion cracking of 3.5NiCrMoV turbine steels in high temperature water. Corros Sci 50(8):2239–2250

    Article  CAS  Google Scholar 

  79. Shi J, Fekete B, Wang J, Macdonald DD (2018) Customization of the coupled environment fracture model for predicting stress corrosion cracking in Alloy 600 in PWR environment. Corros Sci 139:58–67

    Article  CAS  Google Scholar 

  80. Engelhardt GR, Urquidi-Macdonald M, Macdonald DD (1997) A simplified method for estimating corrosion cavity growth rates. Corros Sci 39(3):419–441

    Article  CAS  Google Scholar 

  81. Engelhardt GR, Macdonald DD (2010) Modelling the crack propagation rate for corrosion fatigue at high frequency of applied stress. Corros Sci 52(4):1115–1122

    Article  CAS  Google Scholar 

  82. Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices-I. General corrosion model. Corros Sci 41(11):2165–2190

    Article  CAS  Google Scholar 

  83. Engelhardt GR, Macdonald DD, Millett PJ (1999) Transport processes in steam generator crevices. II. A simplified method for estimating impurity accumulation rates. Corros Sci 41(11):2191–2211

    Article  CAS  Google Scholar 

  84. Lee SK, Kramer D, Macdonald DD (2014) On the shape of stress corrosion cracks in sensitized type 304 SS in Boiling Water Reactor primary coolant pi** at 288°C. J Nucl Mater 454(1–3):359–372

    Article  CAS  Google Scholar 

  85. Macdonald DD (1981) Redox potential measurements in high temperature aqueous systems. J Electrochem Soc 128(2):250–257

    Article  CAS  Google Scholar 

  86. Andresen PL, Ford FP (1996) Response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 38(6):1011–1016

    Article  Google Scholar 

  87. Macdonald DD (1997) Clarification of issues raised by P.L. Andresen and F.P. Ford in their response to “On the modeling of stress corrosion cracking of iron and nickel base alloys in high temperature aqueous environments”. Corros Sci 39(8):1487–1490

    Article  CAS  Google Scholar 

  88. Galvele JR (1986) Enhanced surface mobility as the cause of stress corrosion cracking. J Electrochem Soc 113:953–954

    Article  Google Scholar 

  89. Galvele JR (1987) A stress corrosion cracking mechanism based on surface mobility. Corros Sci 27(1):1–33

    Article  CAS  Google Scholar 

  90. Galvele JR (1993) Surface mobility mechanism of stress-corrosion cracking. Corros Sci 35(1):419–434

    Article  CAS  Google Scholar 

  91. Galvele JR (1996) Application of the surface-mobility stress corrosion cracking mechanism to nuclear materials. J Nucl Mater 229:139–148

    Article  CAS  Google Scholar 

  92. Galvele JR (2000) Recent developments in the surface-mobility stress-corrosion-cracking mechanism. Electrochim Acta 45(21):3537–3541

    Article  CAS  Google Scholar 

  93. Galvele JR (2004) Reply to E.M. Gutman’s: “Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele”. Corros Sci 46(7):1807–1812

    Article  CAS  Google Scholar 

  94. Sieradzki K, Friedersdorf FJ (1994) Notes on the surface mobility mechanism of stress-corrosion cracking. Corros Sci 36(4):669–675

    Article  CAS  Google Scholar 

  95. Galvele JR (1994) Comments on “notes on the surface mobility mechanism of stress-corrosion cracking”, by K. Sieradzki and F. J. Friedersdorf. Corros Sci 36(5):901–910

    Article  CAS  Google Scholar 

  96. Gutman EM (2004) Comments on the “Stress corrosion cracking of zirconium and zircaloy-4 in halide aqueous solutions” by S.B. Farina, G.S. Duffo, J.R. Galvele. Corros Sci 46(7):1801–1806

    Article  CAS  Google Scholar 

  97. Zhu X, Zi G (2017) A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage. Constr Build Mater 137:330–344

    Article  CAS  Google Scholar 

  98. Satoh T, Nakazato T, Moriya S, Suzuki S, Shoji T (1998) Quantitative prediction of environmentally assisted cracking based on a theoretical model and computer simulation. J Nucl Mater 258–263(4):2054–2058

    Article  Google Scholar 

  99. Xue H, Shoji T (2007) Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM. J Press Vess-T ASME 129(3):460–467

    Article  CAS  Google Scholar 

  100. Xue H, Sato Y, Shoji T (2009) Quantitative estimation of the growth of environmentally assisted cracks at flaws in light water reactor components. J Press Vess-T ASME 131(1):011404-1–011404-9

  101. Xue H, Li Z, Lu Z, Shoji T (2011) The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment. Nucl Eng Des 241(3):731–738

    Article  CAS  Google Scholar 

  102. Yang F, Xue H, Zhao L, Fang X (2014) Effects of stress intensity factor on electrochemical corrosion potential at crack tip of nickel-based alloys in high temperature water environments. Rare Metal Mat Eng 43(3):513–518

    Article  CAS  Google Scholar 

  103. Xue H, Li Y (2016) Micro-mechanical state at tip of environmentally assisted cracking in nickel-based alloy. Rare Metal Mat Eng 45(3):537–541

    Article  Google Scholar 

  104. Yang F, Xue H, Zhao L, Fang X (2016) Influence of nickel-based alloys’ mechanical properties on mechanochemical effect at crack tip in high temperature water environments. Rare Metal Mat Eng 45(7):1641–1646

    Article  Google Scholar 

  105. Zhao L, Cui Y, Yang F, Xue H (2018) Analysis on crack driving force at stress corrosion cracking tip induced by scratch in nickel-based alloy. Rare Metal Mat Eng 47(5):1399–1405

    Article  Google Scholar 

  106. Jivkov AP, Stahle P (2002) Strain-driven corrosion crack growth: a pilot study of intergranular stress corrosion cracking. Eng Fract Mech 69(18):2095–2111

    Article  Google Scholar 

  107. Jivkov AP (2002) Strain-assisted corrosion cracking and growth rate inhibitors. Ph.D. Dissertation, Malmö University

  108. Jivkov AP (2004) Strain-induced passivity breakdown in corrosion crack initiation. Theor Appl Fract Mec 42:43–52

    Article  CAS  Google Scholar 

  109. Jivkov AP (2003) Evolution of fatigue crack corrosion from surface irregularities. Theor Appl Fract Mec 40(1):45–54

    Article  CAS  Google Scholar 

  110. Jivkov AP, Stevens NPC, Marrow TJ (2006) A two-dimensional mesoscale model for intergranular stress corrosion crack propagation. Acta Mater 54(13):3493–3501

    Article  CAS  Google Scholar 

  111. Jivkov AP, Stevens NPC, Marrow TJ (2006) A three-dimensional computational model for intergranular cracking. Comput Mater Sci 38(2):442–453

    Article  CAS  Google Scholar 

  112. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Inter J Numer Math Eng 45(5):601–620

    Article  Google Scholar 

  113. Lee SJ, Chang YS (2015) Evaluation of primary water stress corrosion cracking growth rates by using the extended finite element method. Nucl Eng Technol 47(7):895–906

    Article  CAS  Google Scholar 

  114. Lee H, Kang SJ, Choi JB, Kim MK (2017) An extended finite element method-based representative model for primary water stress corrosion cracking of a control rod driving mechanism penetration nozzle. Fatigue Fract Eng Mater Struct 41(1):1–8

    Google Scholar 

  115. Kang SJ, Lee H, Choi JB, Kim MK (2017) PWSCC initiation and propagation in a CRDM penetration nozzle. J Mech Sci Technol 31(11):5387–5395

    Article  Google Scholar 

  116. Saxena S, Ramakrishnan N (2007) A comparison of micro, meso and macroscale FEM analysis of ductile fracture in a CT specimen (mode I). Comput Mater Sci 39(1):1–7

    Article  CAS  Google Scholar 

  117. Ersland CH, Thaulow C, Vatne IR, Østby E (2012) Atomistic modeling of micromechanisms and T-stress effects in fracture of iron. Eng Fract Mech 79:180–190

    Article  Google Scholar 

  118. Bitzek E, Kermode JR, Gumbsch P (2015) Atomistic aspects of fracture. Int J Fract 191(1–2):13–30

    Article  Google Scholar 

  119. Liu X, Hwang W, Park J, Van D, Chang Y, Lee SH, Kim S-Y, Han S, Lee B (2018) Towards the multiscale nature of stress corrosion cracking. Nucl Eng Technol 50(1):1–17

    Article  CAS  Google Scholar 

  120. **ao SP, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Method Appl M 193(17–20):1645–1669

    Article  Google Scholar 

  121. Xu T, Stewart R, Fan J, Zeng X, Yao A (2016) Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods. Eng Fract Mech 155:166–182

    Article  Google Scholar 

  122. Das NK, Tirtom I, Shoji T (2010) A multiscale modelling study of Ni–Cr crack tip initial stage oxidation at different stress intensities. Mater Chem Phys 122(2–3):336–342

    Article  CAS  Google Scholar 

  123. Das NK, Suzuki K, Takeda Y, Ogawa K, Shoji T (2008) Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces. Corros Sci 50(6):1701–1706

    Article  CAS  Google Scholar 

  124. Das NK, Shoji T (2011) A density functional study of atomic oxygen and water molecule adsorption on Ni (111) and chromium-substituted Ni (111) surfaces. Appl Surf Sci 258(1):442–447

    Article  CAS  Google Scholar 

  125. Das NK, Shoji T (2013) Early stage oxidation of Ni-Cr binary alloy (111), (110) and (100) surfaces: a combined density functional and quantum chemical molecular dynamics study. Corros Sci 73:18–31

    Article  CAS  Google Scholar 

  126. Wei X, Dong C, Chen Z, **ao K, Li X (2016) The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods. RSC Adv 6(33):27282–27292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the Bei**g Municipal Science & Technology Commission (Z181100005218005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghao Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lu, Y. & Wang, X. Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant. J Mater Sci 55, 439–463 (2020). https://doi.org/10.1007/s10853-019-03968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03968-w

Navigation