Log in

Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

BiVO4/TiO2 nanocomposites were fabricated by a facile wet-chemical process, followed by the synthesis of TiO2 hierarchical spheres via hydrothermal method. The BiVO4/TiO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results showed that prepared TiO2 presented hierarchical spherical morphology self-assembled by nanoparticles and an anatase–brookite mixed crystal phase. The introduction of monoclinic BiVO4 components retained the hierarchical structures and expanded the light response to around 510 nm. Type II BiVO4/TiO2 heterostructured nanocomposites exhibited improved photocatalytic degradation towards methylene blue under visible-light irradiation, especially for the composite photocatalysts with atomic Ti/Bi = 10, which showed double degradation rate than that of pure BiVO4. The enhanced photocatalytic mechanism of the heterostructured BiVO4/TiO2 nanocomposites was discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 2

Similar content being viewed by others

References

  1. Cai ZQ, Zhao X, Wang T, Liu W, Zhao DY (2017) Reusable platinum-deposited anatase/hexa-titanate nanotubes: roles of reduced and oxidized platinum on enhanced solar-light-driven photocatalytic activity. ACS Sustain Chem Eng 5:547–555

    Article  CAS  Google Scholar 

  2. Sommers JM, Alderman NP, Viasus CJ, Gambarotta S (2017) Revisiting the behaviour of BiVO4 as a carbon dioxide reduction photo-catalyst. Dalton Trans 46:6404–6408

    Article  CAS  Google Scholar 

  3. Lai YK, Huang JY, Cui ZQ, Ge MZ, Zhang KQ, Chen Z, Chi LF (2016) Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12:2203–2224

    Article  CAS  Google Scholar 

  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  5. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619

    Article  CAS  Google Scholar 

  6. Kou JH, Lu CH, Wang J, Chen YK, Xu ZZ, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514

    Article  CAS  Google Scholar 

  7. Chen F, Yang Q, Wang Y, Zhao J, Wang D, Li X, Guo Z, Wang H, Deng Y, Niu C, Zeng G (2017) Novel ternary heterojunction photocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl Catal B 205:133–147

    Article  CAS  Google Scholar 

  8. **a L, Bai J, Li J, Zeng Q, Li L, Zhou B (2017) High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Appl Catal B 204:127–133

    Article  CAS  Google Scholar 

  9. Zhu S, Li Q, Huttula M, Li T, Cao W (2017) One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity. J Mater Sci 52:1679–1693. https://doi.org/10.1007/s10853-016-0460-0

    Article  CAS  Google Scholar 

  10. Kalanur SS, Yoo IH, Park J, Seo HT (2017) Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. J Mater Chem A 5:1455–1461

    Article  CAS  Google Scholar 

  11. Singh AP, Kodan N, Mehta BR, Held A, Mayrhofer L, Moseler M (2016) Band edge engineering in BiVO4/TiO2 heterostructure: enhanced photoelectrochemical performance through improved charge transfer. ACS Catal 6:5311–5318

    Article  CAS  Google Scholar 

  12. Odling G, Robertson N (2016) BiVO4–TiO2 composite photocatalysts for dye degradation formed using the SILAR method. ChemPhysChem 17:2872–2880

    Article  CAS  Google Scholar 

  13. Cheng BY, Yang JS, Cho HW, Wu JJ (2016) Fabrication of an efficient BiVO4–TiO2 heterojunction photoanode for photoelectrochemical water oxidation. ACS Appl Mater Interfaces 8:20032–20039

    Article  CAS  Google Scholar 

  14. Nanakkal AR, Alexander LK (2017) Graphene/BiVO4/TiO2 nanocomposite: tuning band gap energies for superior photocatalytic activity under visible light. J Mater Sci 52:7997–8006. https://doi.org/10.1007/s10853-017-1002-0

    Article  CAS  Google Scholar 

  15. Lui G, Liao JY, Duan AS, Zhang ZS, Fowler M, Yu AP (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262

    Article  CAS  Google Scholar 

  16. Li WJ, Wang Z, Kong DF, Du DD, Zhou M, Du Y, Yan TJ, You JM, Kong DS (2016) Visible-light-induced dendritic BiVO4/TiO2 composite photocatalysts for advanced oxidation process. J Alloys Compd 688:703–711

    Article  CAS  Google Scholar 

  17. Zhu Y, Shah MW, Wang C (2017) Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction. Appl Catal B 203:526–532

    Article  CAS  Google Scholar 

  18. Resasco J, Zhang H, Kornienko N, Becknell N, Lee H, Guo JH, Briseno AL, Yang PD (2016) TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent Sci 2:80–88

    Article  CAS  Google Scholar 

  19. Wang Y, Xu H, Wang X, Zhang X, Jia H, Zhang L, Qiu J (2006) A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. J Phys Chem B 110:13835–13840

    Article  CAS  Google Scholar 

  20. Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet JP (2001) Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 11:1116–1121

    Article  CAS  Google Scholar 

  21. Zhao B, Lin L, He D (2013) Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J Mater Chem A 1:1659–1668

    Article  CAS  Google Scholar 

  22. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Prentice

    Google Scholar 

  23. Tian F, Zhang YP, Zhang J, Pan CX (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519

    Article  CAS  Google Scholar 

  24. Pauling L, Sturdivant JH (1928) The crystal structure of brookite. Z Kristall 68:239–256

    CAS  Google Scholar 

  25. Bellardita M, Paola AD, Megna B, Palmisano L (2017) Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl Catal B 201:150–158

    Article  CAS  Google Scholar 

  26. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  27. Kong HJ, Won DH, Kim J, Woo SI (2016) Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem Mater 28:1318–1324

    Article  CAS  Google Scholar 

  28. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  29. Romero OI, Beltram A, Delgado JJ, Adami G, Montini T, Fornasiero P (2015) Photocatalytic H2 production by ethanol photodehydrogenation: effect of anatase/brookite nanocomposites composition. Inorg Chim Acta 431:197–205

    Article  Google Scholar 

  30. Tay Q, Chen Z (2016) Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/brookite TiO2. Int J Hydrog Energy 41:10590–10597

    Article  CAS  Google Scholar 

  31. Zhu X, Zhang F, Wang M, Gao X, Luo Y, Xue J, Zhang Y, Ding J, Sun S, Bao J, Gao C (2016) A shuriken-shaped m-BiVO4/{001}–TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity. Appl Catal A 521:42–49

    Article  CAS  Google Scholar 

  32. Wetchakun N, Chainet S, Phanichphant S, Wetchakun K (2015) Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int 41:5999–6004

    Article  CAS  Google Scholar 

  33. Wang L, Shan LW, Wu Z, Dong LM (2017) Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met 36:129–133

    Article  CAS  Google Scholar 

  34. Pan J, Jiang SP (2016) Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity. J Colloid Interface Sci 469:25–30

    Article  CAS  Google Scholar 

  35. Song X, Li Y, Wei Z, Ye S, Dionysiou DD (2017) Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light. Chem Eng J 314:443–452

    Article  CAS  Google Scholar 

  36. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  37. Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ (2015) Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Interfaces 7:8631–8639

    Article  CAS  Google Scholar 

  38. Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Huang H, Liu Y, Kang Z (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B 206:501–509

    Article  CAS  Google Scholar 

  39. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York

    Book  Google Scholar 

  40. Sun J, Li X, Zhao Q, Ke J, Zhang D (2014) Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J Phys Chem C 118:10113–10121

    Article  CAS  Google Scholar 

  41. Hu Y, Li D, Zheng Y, Chen W, He Y, Shao Y, Fu X, **ao G (2011) BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl Catal B 104:30–36

    Article  CAS  Google Scholar 

  42. Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B Environ 142–143:1–7

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 51272115 and NSFC, Grant No. 61504073) and Doctoral Found of QUST (No. 010022803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aofei Qu or Fanglin Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Xu, C., Sun, X. et al. Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation. J Mater Sci 53, 11329–11342 (2018). https://doi.org/10.1007/s10853-018-2442-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2442-x

Keywords

Navigation