Log in

Short-range antiferromagnetic correlations and large magnetic entropy change in (La0.5Pr0.5)0.67Ca0.33MnO3

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a detailed study of magnetic properties in manganite (La0.5Pr0.5)0.67Ca0.33MnO3. In contrast to the usual beliefs, it shows an abnormal upturn deviation from the Curie–Weiss law on the inverse susceptibility curve. Such a non-Griffiths-like phase is further confirmed from the inverse double integrated intensities of electron paramagnetic resonance spectrum. Because La\(^{3+}\) ions are substituted by Pr\(^{3+}\) ions with 50% concentrations, the ratio of three ions (La\(^{3+}\), Pr\(^{3+}\), Ca\(^{2+}\)) is close to 1 on A-site sublattice. As a result, some short-range antiferromagnetic (CO AFM) phases come into being in the system due to the existence of localized charge ordering states. Therefore, the upturn deviation from Curie–Weiss law originates from the appearance of short-range CO AFM correlations above \(T_{\text{C}}\). Additionally, a magnetic field-driven-metamagnetic transition is found, which gives a main contribution for the large magnetic entropy change (MEC) observed in this sample. Both the Arrott plot and the renormalized MEC curves testify that this transition belongs to first-order magnetic transition. The insignificant hysteresis loop indicate that the inevitable thermal hysteresis can be ignored in the present first-order material implying that it is a potential candidate for the cryogenic temperature magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K (1993) Giant negative magnetoresistance in perovskitelike La\(_{2/3}\)Ba\(_{1/3}\)MnO\(_{x}\) ferromagnetic films. Phys Rev Lett 71:2331

    Article  Google Scholar 

  2. ** S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264:413

    Article  Google Scholar 

  3. Rao CNR, Cheetham AK (1999) Charge ordering in manganates. Science 276:911

    Article  Google Scholar 

  4. De TJM, Ibarra MR, Algarabel PA, Ritter C, Marquina C, Blasco J, Garcia J, del Moral A, Arnold Z (1997) Evidence for magnetic polarons in the magnetoresistive perovskites. Nature (London) 386:256

    Article  Google Scholar 

  5. Mahendiran R, Tiwary SK, Raychaudhuri AK, Ramakrishnan TV, Mahesh R, Rangavittal N, Rao CNR (1996) Structure, electron-transport properties, and giant magnetoresistance of hole-doped LaMnO\(_{3}\) systems. Phys Rev B 53:3348

    Article  Google Scholar 

  6. Dagotto E, Hotta T, Moreo A, Moreo A (2001) Colossal magnetoresistant materials: the key role of phase separation. Phys Rep 344:1

    Article  Google Scholar 

  7. Salamon MB, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73:583

    Article  Google Scholar 

  8. Rodriguez-Martinez LM, Attfield JP (1996) Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys Rev B 54:R15622

    Article  Google Scholar 

  9. Mori S, Chen CH, Cheong S-W (1998) Paired and unpaired charge stripes in the ferromagnetic phase of La\(_{0.5}\)Ca\(_{0.5}\)MnO\(_{3}\). Phys Rev Lett 81:3972

    Article  Google Scholar 

  10. Yunoki S, Hu J, Malvezzi AL, Moreo A, Furukawa N, Dagotto E (1998) Phase separation in electronic models for manganites. Phys Rev Lett 80:845

    Article  Google Scholar 

  11. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403

    Article  Google Scholar 

  12. Millis AJ, Littlewood PB, Shraiman BI (1995) Double exchange alone does not explain the resistivity of La\(_{1-x}\)Sr\(_{x}\)MnO\(_{3}\). Phys Rev Lett 74:5144

    Article  Google Scholar 

  13. Kawano-Furukawa H, Kajimoto R, Yoshizawa H, Tomioka Y, Kuwahara H, Tokura Y (2003) Orbital order and a canted phase in the paramagnetic and ferromagnetic states of 50% hole-doped colossal magnetoresistance manganites. Phys Rev B 68:174422

    Article  Google Scholar 

  14. Tokura Y, Nagaosa N (2000) Orbital physics in transition–metal oxides. Science 288:462

    Article  Google Scholar 

  15. Phana M-H, Yu S-C (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308:325

    Article  Google Scholar 

  16. Pecharsky VK, Gschneidner KA, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479

    Article  Google Scholar 

  17. Griffiths RB (1969) Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys Rev Lett 23:17

    Article  Google Scholar 

  18. Salamon MB, Chun SH (2003) Griffiths singularities and magnetoresistive manganites. Phys Rev B 68:014411

    Article  Google Scholar 

  19. Pramanik AK, Banerjee A (2010) Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr\(_{0.5}\)Sr\(_{0.5}\)Mn\(_{1-y}\)Ga\(_{y}\)O\(_{3}\) (y = 0.0, 0.025, and 0.05). Phys Rev B 81:024431

    Article  Google Scholar 

  20. Chan PY, Goldenfeld N, Salamon M (2006) Critical behavior of Griffiths ferromagnets. Phys Rev Lett 97:137201

    Article  Google Scholar 

  21. Zhou S, Guo Y, Zhao J, He L, Shi L (2011) Size-induced griffiths phase and second-order ferromagnetic transition in Sm\(_{0.5}\)Sr\(_{0.5}\)MnO\(_{3}\) nanoparticles. J Phys Chem C 115:1535

    Article  Google Scholar 

  22. Zhang X, Fan J, Xu L, Tong W, Hu D, He X, Zhang L, Pi L, Zhang Y (2016) Evidence of emerging Griffiths singularity in La\(_{0.5}\)Sr\(_{0.5}\)MnO\(_{3}\) nanocrystalline probed by magnetization and electron paramagnetic resonance. Mater Chem Phys 175:62

    Article  Google Scholar 

  23. Zhou S, Guo Y, Zhao J, Shi L (2010) Nature of short-range ferromagnetic ordered state above TC in double perovskite La2NiMnO6. Appl Phys Lett 96:262507

    Article  Google Scholar 

  24. Zhang L, Fan J, Li L, Li R, Ling L, Qu Z, Tong W, Tan S, Zhang Y (2010) Critical properties of the 3D-Heisenberg ferromagnet. EPL 91:57001

    Article  Google Scholar 

  25. Rivadulla F (2011) Conduction-electron spin resonance and spin-density fluctuations of CoS\(_{2-x}\)Se\(_{x}\) (x\(\le \)0.1). Phys Rev B 84:132406

    Article  Google Scholar 

  26. Tomioka Y, Asamitsu A, Kuwahara H, Moritomo Y, Tokura Y (1996) Magnetic-field-induced metal-insulator phenomena in Pr\(_{1-x}\)Ca\(_{x}\)MnO\(_{3}\) with controlled charge-ordering instability. Phys Rev B 53:R1689

    Article  Google Scholar 

  27. Ibarra MR, Zhao G, De TJM, Landa BG, Marquina C, Algarabel PA, Keller H, Ritter C (1998) Oxygen isotope effects in (La\(_{0.5}\)Nd\(_{0.5}\))\(_{2/3}\)Ca\(_{1/3}\)MnO\(_{3}\): relevance of the electron–phonon interaction to the phase segregation. Phys Rev B 57:7446

    Article  Google Scholar 

  28. Deisenhofer J, Braak D, von Nidda HAK, Hemberger J, Eremina RM, Ivanshin VA, Balbashov AM, Jug G, Loidl A, Kimura T, Tokura Y (2005) Observation of a Griffiths phase in paramagnetic La\(_{1-x}\)Sr\(_{x}\)MnO\(_{3}\). Phys Rev Lett 95:257202

    Article  Google Scholar 

  29. Chen L, Fan J, Tong W, Hu D, Ji Y, Liu J, Zhang L, Pi L, Zhang Y, Yang H (2016) Evolution of the intrinsic electronic phase separation in La\(_{0.6}\)Er\(_{0.1}\)Sr\(_{0.3}\)MnO\(_{3}\) perovskite. Sci Rep 6:14

    Article  Google Scholar 

  30. Nayak AK, Suresh KG, Nigam AK (2009) Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys 42:035009

    Article  Google Scholar 

  31. Singh NK, Kumar P, Suresh KG, Nigam AK, Coelho AA, Gama S (2007) Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo\(_{2}\) and Er(Co\(_{1-x}\)Si\(_{x}\))\(_{2}\). J Phys Condens Matter 19:036213

    Article  Google Scholar 

  32. Banerjee BK (1964) On a generalized approach to first and second order magnetic transitions. Phys Lett 12:16

    Article  Google Scholar 

  33. Hueso LE, Sande P, Miguens DR, Rivas J, Rivadulla F, Lopez-Quintela MA (2002) Tuning of the magnetocaloric effect in La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_{3-\delta }\) nanoparticles synthesized by sol–gel techniques. J Appl Phys 91:9943

    Article  Google Scholar 

  34. Dankov SY, Tishin AM, Pecharsky VK, Gschneidner KA Jr (1998) Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys Rev B 57:3478

    Article  Google Scholar 

  35. Phan T-L, Dang NT, Ho TA, Manh TV, Thanh TD, Jung CU, Lee BW, Le A-T, Phan AD, Yu SC (2016) First-to-second-order magnetic-phase transformation in La\(_{0.7}\)Ca\(_{0.3-x}\)Ba\(_{x}\)MnO\(_{3}\) exhibiting large magnetocaloric effect. J Alloys Compd 657:818

    Article  Google Scholar 

  36. Mira J, Rivas J, Hueso LE, Rivadulla F, Lopez Quintela MA (2002) Drop of magnetocaloric effect related to the change from first-to second-order magnetic phase transition in La\(_{2/3}\)(Ca\(_{1-x}\)Sr\(_{x}\))\(_{1/3}\)MnO\(_{3}\). J Appl Phys 44:8903

    Article  Google Scholar 

  37. Rostamnejadi A, Venkatesan M, Kameli P, Salamati H, Coey JMD (2011) Magnetocaloric effect in La\(_{0.67}\)Sr\(_{0.33}\)MnO\(_{3}\) manganite above room temperature. J Magn Magn Mater 323:2214

    Article  Google Scholar 

  38. Franco V, Blázquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res 42:305

    Article  Google Scholar 

  39. Giguere A, Foldeaki M, Gopal BR, Chahine R, Bose TK, Frydman A, Barclay JA (1999) Direct measurement of the giant adiabatic temperature change in Gd\(_{5}\)Si\(_{2}\)Ge\(_{2}\). Phys Rev Lett 83:2262

    Article  Google Scholar 

  40. Bingham NS, Phan MH, Srikanth H, Torija MA, Leighton C (2009) Magnetocaloric effect and refrigerant capacity in charge-ordered manganites. J Appl Phys 106:023909

    Article  Google Scholar 

  41. Amaral JS, Amaral VS (2009) The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements. Appl Phys Lett 94:042506

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. U1632122 and 11574322), the National Key Research and Development Program of China (Grant No. 2017YFA0403502), the Fundamental Research Funds for the Central Universities (Grant Nos. NE2016102 and NP2017103), and Foundation of Graduate Innovation Center In NUAA (Grant No. kfjj20160804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyu Fan, Lei Zhang or Hao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fan, J., Tong, W. et al. Short-range antiferromagnetic correlations and large magnetic entropy change in (La0.5Pr0.5)0.67Ca0.33MnO3 . J Mater Sci 53, 323–332 (2018). https://doi.org/10.1007/s10853-017-1518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1518-3

Keywords

Navigation