Log in

Tuning the acidic–basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mg–Zn–Al hydrotalcites and derived mixed oxides with different Mg2+-to-Zn2+ ratios were prepared by co-precipitation in super-saturated conditions, followed by thermal decomposition at 500 °C. The synthesized materials were evaluated as catalysts for the self-condensation of octanal in order to establish structure-to-functionality properties of the prepared materials. The presence of zinc affects the structural and textural properties of the as-synthesized hydrotalcites and derived mixed oxides, and provokes a remarkable modification on the acidic–basic properties of the materials as studied by CO2 and NH3-TPD. The presence of Zn2+ caused an increment in the concentration of surface acidic sites compared to the binary Mg–Al system. The samples characterized by a Zn/Mg ratio ≤1 showed the optimal ratio of acidic and basic sites and the best catalytic performance for the production of the α,β-unsaturated aldehyde. The reconstruction of the layered materials (starting from the mixed oxides) caused an increment in the concentration of surface OH groups, further modifying the selectivity of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6
Scheme 2
Figure 7

Similar content being viewed by others

References

  1. Climent MJ, Corma A, Iborra S, Sabater MJ (2014) Heterogeneous catalysis for tandem reactions. ACS Catal 4(3):870–891. doi:10.1021/cs401052k

    Article  Google Scholar 

  2. Filice M, Palomo JM (2014) Cascade reactions catalyzed by bionanostructures. ACS Catal 4(5):1588–1598. doi:10.1021/cs401005y

    Article  Google Scholar 

  3. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14(4):161–198. doi:10.1016/S0169-1317(98)00058-1

    Article  Google Scholar 

  4. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11(2):173–301. doi:10.1016/0920-5861(91)80068-K

    Article  Google Scholar 

  5. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066. doi:10.1039/c4cs00160e

    Article  Google Scholar 

  6. Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem-Eur J 15(16):3920–3935. doi:10.1002/chem.200900060

    Article  Google Scholar 

  7. Tichit D, Coq B (2003) Catalysis by hydrotalcites and related materials. Cattech 7(6):206–217. doi:10.1023/b:catt.0000007166.65577.34

    Article  Google Scholar 

  8. Abello S, Medina F, Tichit D, Perez-Ramirez J, Cesteros Y, Salagre P, Sueiras JE (2005) Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations. Chem Commun 11:1453–1455. doi:10.1039/b417322h

    Article  Google Scholar 

  9. Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen JC, Sueiras JE, Salagre P, Cesteros Y (2005) Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem-Eur J 11(2):728–739. doi:10.1002/chem.200400409

    Article  Google Scholar 

  10. Álvarez MG, Chimentão RJ, Barrabés N, Föttinger K, Gispert-Guirado F, Kleymenov E, Tichit D, Medina F (2013) Structure evolution of layered double hydroxides activated by ultrasound induced reconstruction. Appl Clay Sci 83–84:1–11. doi:10.1016/j.clay.2013.08.006

    Article  Google Scholar 

  11. Chimentão RJ, Abelló S, Medina F, Llorca J, Sueiras JE, Cesteros Y, Salagre P (2007) Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. J Catal 252(2):249–257. doi:10.1016/j.jcat.2007.09.015

    Article  Google Scholar 

  12. Capps SM, Clarke TP, Charmant JPH, Hoppe HAF, Lloyd-Jones GC, Murray M, Peakman TM, Stentiford RA, Walsh KE, Worthington PA (2000) Highly substituted homoallylvinylcyclopropanes by indium-mediated reaction of alpha, beta-unsaturated ketones and aldehydes with allylic halides. Eur J Org Chem 6:963–974

    Article  Google Scholar 

  13. H-f Xu, Zhong H, Wang S, F-x Li (2015) One-pot synthesis of cyclic aldol tetramer and alpha, beta-unsaturated aldol from linear aldehydes using quaternary ammonium combined with sodium hydroxide as catalysts. J Cent South Univ 22(6):2081–2087. doi:10.1007/s11771-015-2732-2

    Article  Google Scholar 

  14. Sels BF, De Vos DE, Jacobs PA (2001) Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev-Sci Eng 43(4):443–488. doi:10.1081/cr-120001809

    Article  Google Scholar 

  15. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B 66(1–2):111–118. doi:10.1016/j.apcatb.2006.03.001

    Article  Google Scholar 

  16. Hora L, Kelbichova V, Kikhtyanin O, Bortnovskiy O, Kubicka D (2014) Aldol condensation of furfural and acetone over Mg-Al layered double hydroxides and mixed oxides. Catal Today 223:138–147. doi:10.1016/j.cattod.2013.09.022

    Article  Google Scholar 

  17. Yadav GD, Aduri P (2012) Aldol condensation of benzaldehyde with heptanal to jasminaldehyde over novel Mg-Al mixed oxide on hexagonal mesoporous silica. J Mol Catal A 355:142–154. doi:10.1016/j.molcata.2011.12.008

    Article  Google Scholar 

  18. Hora L, Kikhtyanin O, Čapek L, Bortnovskiy O, Kubička D (2015) Comparative study of physico-chemical properties of laboratory and industrially prepared layered double hydroxides and their behavior in aldol condensation of furfural and acetone. Catal Today 241:221–230. doi:10.1016/j.cattod.2014.03.010 Part B

    Article  Google Scholar 

  19. Tichit D, Lutic D, Coq B, Durand R, Teissier R (2003) The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal 219(1):167–175. doi:10.1016/S0021-9517(03)00192-1

    Article  Google Scholar 

  20. Corma A, Garcia H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103(11):4307–4365. doi:10.1021/cr030680z

    Article  Google Scholar 

  21. Climent MJ, Corma A, Iborra S, Ep** K, Velty A (2004) Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. J Catal 225(2):316–326. doi:10.1016/j.jcat.2004.04.027

    Article  Google Scholar 

  22. Crespo I, Barriga C, Ulibarri MA, Gonzalez-Bandera G, Malet P, Rives V (2001) An X-ray diffraction and absorption study of the phases formed upon calcination off Zn-Al-Fe hydrotalcites. Chem Mater 13(5):1518–1527. doi:10.1021/cm0010856

    Article  Google Scholar 

  23. Kloprogge JT, Hickey L, Frost RL (2004) The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. J Solid State Chem 177(11):4047–4057. doi:10.1016/j.jssc.2004.07.010

    Article  Google Scholar 

  24. Yang K, LG Yan, Yang YM, Yu SJ, Shan RR, Yu HQ, Zhu BC, Du B (2014) Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: kinetics, isotherms and mechanisms. Sep Purif Technol 124:36–42. doi:10.1016/j.seppur.2013.12.042

    Article  Google Scholar 

  25. Vieira AC, Moreira RL, Dias A (2009) Raman scattering and fourier transform infrared spectroscopy of Me6Al2(OH)16Cl2·4H2O (Me=Mg, Ni, Zn Co, and Mn) and Ca2Al(OH)6Cl·4H2O Hydrotalcites. J Phys Chem C 113(30):13358–13368. doi:10.1021/jp902566r

    Article  Google Scholar 

  26. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  27. Valente JS, Tzompantzi F, Prince J, Cortez JGH, Gomez R (2009) Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides. Appl Catal B 90(3–4):330–338. doi:10.1016/j.apcatb.2009.03.019

    Article  Google Scholar 

  28. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41(1–3):53–71. doi:10.1016/S0920-5861(98)00038-8

    Article  Google Scholar 

  29. Sanchez-Cantu M, Perez-Diaz LM, Rubio-Rosas E, Abril-Sandoval VH, Merino-Aguirre JG, Reyes-Cruz FM, Orea L (2014) MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content. Chem Papers 68(5):638–649. doi:10.2478/s11696-013-0491-9

    Article  Google Scholar 

  30. Lee G, Jeong Y, Takagaki A, Jung JC (2014) Sonication assisted rehydration of hydrotalcite catalyst for isomerization of glucose to fructose. J Mol Catal A 393:289–295. doi:10.1016/j.molcata.2014.06.019

    Article  Google Scholar 

  31. Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature—on the effect of basicity. Catal Today 257:59–65. doi:10.1016/j.cattod.2015.03.017 Part 1

    Article  Google Scholar 

  32. Pavel OD, Tichit D, Marcu I-C (2012) Acido-basic and catalytic properties of transition-metal containing Mg–Al hydrotalcites and their corresponding mixed oxides. Appl Clay Sci 61:52–58. doi:10.1016/j.clay.2012.03.006

    Article  Google Scholar 

  33. Di Cosimo JI, Díez VK, Xu M, Iglesia E, Apesteguía CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178(2):499–510. doi:10.1006/jcat.1998.2161

    Article  Google Scholar 

  34. Liu P, Derchi M, Hensen EJM (2014) Promotional effect of transition metal do** on the basicity and activity of calcined hydrotalcite catalysts for glycerol carbonate synthesis. Appl Catal B 144:135–143. doi:10.1016/j.apcatb.2013.07.010

    Article  Google Scholar 

  35. Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J Catal 190(2):261–275. doi:10.1006/jcat.1999.2734

    Article  Google Scholar 

  36. Shen J, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. doi:10.1006/jssc.1997.7739

    Article  Google Scholar 

  37. Bezen MCI, Breitkopf C, Lercher JA (2011) On the acid–base properties of Zn–Mg–Al mixed oxides. Appl Catal A 399(1–2):93–99. doi:10.1016/j.apcata.2011.03.053

    Article  Google Scholar 

  38. Rossi TM, Campos JC, Souza MMVM (2016) CO2 capture by Mg-Al and Zn-Al hydrotalcite-like compounds. Adsorption 22(2):151–158. doi:10.1007/s10450-015-9732-2

    Article  Google Scholar 

  39. Climent MJ, Corma A, Iborra S, Velty A (2004) Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J Catal 221(2):474–482. doi:10.1016/j.jcat.2003.09.012

    Article  Google Scholar 

  40. Sharma SK, Parikh PA, Jasra RV (2007) Solvent free aldol condensation of propanal to 2-methylpentenal using solid base catalysts. J Mol Catal A 278(1–2):135–144. doi:10.1016/j.molcata.2007.09.002

    Article  Google Scholar 

  41. Díez VK, Di Cosimo JI, Apesteguía CR (2008) Study of the citral/acetone reaction on MgyAlOx oxides: effect of the chemical composition on catalyst activity, selectivity and stability. Appl Catal A 345(2):143–151. doi:10.1016/j.apcata.2008.04.035

    Article  Google Scholar 

  42. Aramendia MA, Borau V, Jimenez C, Marinas JM, Ruiz JR, Urbano F (2003) Reduction of alpha, beta-unsaturated aldehydes with basic MgO/M2O3 catalysts (M=Al, Ga, In). Appl Catal A 249(1):1–9. doi:10.1016/s0926-860x(03)00163-7

    Article  Google Scholar 

  43. Hidalgo JM, Jimenez-Sanchidrian C, Rafael Ruiz J (2014) Delaminated layered double hydroxides as catalysts for the Meerwein-Ponndorf-Verley reaction. Appl Catal A 470:311–317. doi:10.1016/j.apcata.2013.11.007

    Article  Google Scholar 

  44. Mora M, Isabel Lopez M, Jimenez-Sanchidrian C, Rafael Ruiz J (2010) Ca/Al mixed oxides as catalysts for the Meerwein-Ponndorf-Verley Reaction. Catal Lett 136(3–4):192–198. doi:10.1007/s10562-010-0329-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the IWT-Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Van Der Voort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, W.Y., Aliç, F., Verberckmoes, A. et al. Tuning the acidic–basic properties by Zn-substitution in Mg–Al hydrotalcites as optimal catalysts for the aldol condensation reaction. J Mater Sci 52, 628–642 (2017). https://doi.org/10.1007/s10853-016-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0360-3

Keywords

Navigation