Log in

Thermodynamic and kinetic evidence for MgO formation and pinning behavior in glycine-doped MgB2 bulks

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation and role of MgO impurity phase in the glycine (Gly; C2H5NO2)-doped MgB2 were investigated by preparing the samples from multiple routes. On the contrary to the observation that the dielectric MgO aggregates at the grain boundary and deteriorates the superconductivity in the un-doped system, the MgO particles in the Gly-doped system dispersed uniformly on the MgB2 matrix and provided enhanced effect on the critical current density. Thermodynamic and kinetic (Ozawa–Flynn–Wall method) analyses were carried out by in situ X-ray diffraction (in situ XRD) and differential scanning calorimetry (DSC) techniques, which proved that the formation of MgO is owing to the reaction between Mg and the decomposition product of Gly (CO2) in advance. Due to this prior reaction, the solid–solid Mg–B reaction followed the first-order reaction mechanism in the Gly-doped MgB2, rather than the second-order Avrami–Erofeev mechanism, which is accorded by the un-doped sample. This reaction 2 Mg + CO2 → 2 MgO + C is analogous to the dual reaction mechanism 2Mg + SiC → Mg2Si + C in the SiC-doped MgB2, and similarly the MgO served as effective pinning centers and enhanced the critical current density in the Gly-doped MgB2, while the C atoms provided the scattering effect and improved the upper critical field. Combined with the effect of histidine on the superconductivity of MgB2, we summed up the requirements for an amino acid to be an effective dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64

    Article  Google Scholar 

  2. Finnemore DK, Ostenson JE, Bud’Ko SL, Lapertot G, Canfield PC (2001) Thermodynamic and transport properties of superconducting Mg10B2. Phys Rev Lett 86:2420–2422

    Article  Google Scholar 

  3. Tachikawa K, Yamada Y, Suzuki O, Enomoto M, Aodai M (2002) Effects of metal powder addition on the critical current in MgB2 tapes. Phys C 382:108–112

    Article  Google Scholar 

  4. Masui T, Lee S, Tajima S (2004) Carbon-substitution effect on the electronic properties of MgB2 single crystals. Phys Rev B 70:024504

    Article  Google Scholar 

  5. Senkowicz BJ, Moyet RP, Mungall RJ, Hedstrom J, Uwakweh ONC, Hellstrom EE, Larbalestier DC (2006) Atmospheric conditions and their effect on ball-milled MgB2. Supercond Sci Technol 19:1173–1177

    Article  Google Scholar 

  6. Yeoh WK, Kim JH, Horvat J, Xu X, Qin MJ, Dou SX, Jiang CH, Nakane T, Kumakura H, Munroe P (2006) Control of nano carbon substitution for enhancing the critical current density in MgB2. Supercond Sci Technol 19:596–599

    Article  Google Scholar 

  7. Yamamoto A, Shimoyama JI, Ueda S, Iwayama I, Horii S, Kishio K (2005) Effects of B4C do** on critical current properties of MgB2 superconductor. Supercond Sci Technol 18:1323–1328

    Article  Google Scholar 

  8. Dou SX, Soltanian S, Horvat J, Wang XL, Zhou SH, Ionescu M, Liu HK, Munroe P, Tomsic M (2002) Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC do**. Appl Phys Lett 81:3419–3421

    Article  Google Scholar 

  9. Dou SX, Shcherbakova O, Yeoh WK, Kim JH, Soltanian S, Wang XL, Senatore C, Fukiger R, Dhalle M, Husnjak O, Babic E (2007) Mechanism of enhancement in electromagnetic properties of MgB2 by nano SiC do**. Phys Rev Lett 98:097002

    Article  Google Scholar 

  10. Ye SJ, Matsumoto A, Zhang YC, Kumakura H (2014) Strong enhancement of high-field critical current properties and irreversibility field of MgB2 superconducting wires by coronene active carbon source addition via the new B powder carbon-coating method. Supercond Sci Technol 27:085012

    Article  Google Scholar 

  11. Shah MS, Shahabuddin M, Alzayed NS, Hassib AM (2014) Superconducting properties of in situ Mg1.05(B1−xCx)2 doped with melanin (C16H2O3N2) via ultrasonication in ethanol. J Supercond Nov Magn 27:1221–1228

    Article  Google Scholar 

  12. Bateni A, Erdem E, Repp S, Acar S, Kokal I, Haler W, Weber S, Somer M (2014) Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials. J Appl Phys 117:153905

    Article  Google Scholar 

  13. Bateni A, Repp S, Thomann R, Acar S, Erdem E, Somer M (2014) Defect structure of ultrafine MgB2 nanoparticles. Appl Phys Lett 105:202605

    Article  Google Scholar 

  14. Shcherbakova OV, Pan AV, Wang JL, Shcherbakov AV, Dou SX, Wexler D, Babić E, Jerčinović M, Husnjak O (2008) Sugar as an optimal carbon source for the enhanced performance of MgB2 superconductors at high magnetic fields. Supercond Sci Technol 21:015005

    Article  Google Scholar 

  15. Jiang CH, Hatakeyama H, Kumakura H (2005) Effect of nanometer MgO addition on the in situ PIT processed MgB2/Fe tapes. Phys C 423:45–50

    Article  Google Scholar 

  16. Cai Q, Ma ZQ, Liu YC, Yu LM (2012) Enhancement of critical current density in glycine-doped MgB2 bulks. Mater Chem Phys 136:778–782

    Article  Google Scholar 

  17. Cai Q, Liu YC, Ma ZQ, Yu LM (2012) Significant enhancement of critical current density in Gly-doped MgB2 bulk by tailoring the formation of MgO. Scr Mater 67:92–95

    Article  Google Scholar 

  18. Bean CP (1962) Magnetization of hard superconductors. Phys Rev Lett 8:250–253

    Article  Google Scholar 

  19. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  20. Ma ZQ, Liu YC, Cai Q, Jiang H, Yu LM (2013) Excellent J c in the low-temperature sintered MgB2 superconductors consisted of uncompleted MgB2 phase and residual Mg. Mater Chem Phys 141:378–382

    Article  Google Scholar 

  21. Susner MA, Sumption MD, Rindfleisch MA, Collings EW (2013) Critical current densities of doped MgB2 strands in low and high applied field ranges: the J c(B) crossover effect. Phys C 490:20–25

    Article  Google Scholar 

  22. Li J, Wang Z, Yang X, Hu L, Liu Y, Wang C (2007) Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J Anal Appl Pyrolysis 80:247–253

    Article  Google Scholar 

  23. Eigenfeld K, Tilch W, Erchov S, Podobed O (2004) Integrated magnesium technology. Adv Eng Mater 6:520–525

    Article  Google Scholar 

  24. Barln I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer, Berlin

    Google Scholar 

  25. Liu ZK, Zhong Y, Schlom DG, ** XX, Li Q (2001) Computational thermodynamic modeling of the Mg–B system. Calphad 25:299–303

    Article  Google Scholar 

  26. Liang YJ, Chen YC (1993) Data handbook of mineral thermodynamics. Northeastern University Press, Shenyang

    Google Scholar 

  27. Liu YC, Shi QZ, Zhao Q, Ma ZQ (2007) Kinetics analysis for the sintering of bulk MgB2 superconductor. J Mater Sci 18:855–861. doi:10.1007/s10854-006-9089-0

    Google Scholar 

  28. Kim JH, Dou SX, Shi DQ, Rindfleisch M, Tomsic M (2007) Study of MgO formation and structural defects in in situ processed MgB2/Fe wires. Supercond Sci Technol 20:1026–1031

    Article  Google Scholar 

  29. Ma ZQ, Liu YC, Gao ZM (2010) The synthesis and grain connectivity of lamellar MgB2 grains by Cu–activated sintering at low temperature. Scr Mater 63:399–402

    Article  Google Scholar 

  30. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  31. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Bur Stand 70:487–523

    Article  Google Scholar 

  32. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polymer Sci 5:285–292

    Article  Google Scholar 

  33. Popescu C (1996) Integral method to analyze the kinetics of heterogeneous reactions under non–isothermal conditions a variant on the Ozawa–Flynn–Wall method. Thermochim Acta 285:309–323

    Article  Google Scholar 

  34. Shi QZ, Liu YC, Gao ZM, Zhao Q, Ma ZQ (2008) In situ formation process and mechanism of bulk MgB2 before Mg melting. J Mater Res 23:1840–1848

    Article  Google Scholar 

  35. Ma ZQ, Liu YC (2011) The varied kinetics mechanisms in the synthesis of MgB2 from elemental powders by low-temperature sintering. Mater Chem Phys 126:114–117

    Article  Google Scholar 

  36. Weller K, Jeurgens LPH, Wang Z, Mittemeijer EJ (2015) Thermal oxidation of amorphous Al0.44Zr0.56 alloys. Acta Mater 87:187–200

    Article  Google Scholar 

  37. Babić E, Kušević I, Husnjak O, Soltanian S, Wang XL, Dou SX (2007) Flux pinning in nanoparticle doped MgB2/Cu tapes. Phys C 460–462:589–590

    Google Scholar 

  38. Husnjak O, Babic E, Kusevic Wang X L, Soltanian S, Dou SX (2007) Flux-pinning and inhomogeneity in MgB2/Fe wires. Solid State Commun 143:412–415

    Article  Google Scholar 

  39. Fan ZY, Hinks DG, Newman N, Rowell JM (2001) Experimental study of MgB2 decomposition. Appl Phys Lett 79:87–89

    Article  Google Scholar 

  40. Rowell JM, Xu SY, Zeng XH, Pogrebnyakov AV, Li Q, ** XX, Redwing JM, Tian W, Pan X (2003) Critical current density and resistivity of MgB2 films. Appl Phys Lett 83:102–104

    Article  Google Scholar 

  41. Yamamoto A, Shimoyama J, Kishio K, Matsushita T (2007) Limiting factors of normal-state conductivity in superconducting MgB2: an application of mean-field theory for a site percolation problem. Supercond Sci Technol 20:658–666

    Article  Google Scholar 

  42. Cai Q, Liu YC, Ma ZQ, Yu LM (2013) Superconducting properties and growth mechanism of layered structure in MgB2 bulks with Cu/Y2O3 co-do**. J Mater Sci 24:1451–1457. doi:10.1007/s10854-012-0951-y

    Google Scholar 

  43. Dou SX, Pan AV, Zhou S, Ionescu M, Liu HK, Munroe PR (2002) Substitution-induced pinning in MgB2 superconductor doped with SiC nano-particles. Supercond Sci Technol 15:1587–1591

    Article  Google Scholar 

  44. Kušević I, Marohnić Ž, Babić E, Drobac Ð, Wang XL, Dou SX (2002) Flux pinning and critical currents in polycrystalline MgB2. Solid State Commun 122:347–350

    Article  Google Scholar 

  45. Cai Q, Liu YC, Ma ZQ, Yu LM (2014) Effects of MgO evolution on the critical current density in bulk MgB2 containing histidine. Phys C 496:53–57

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the International Thermonuclear Experimental Reactor Program Special Project (Granted No. 2014GB125006), the National High Technology Research and Development Program of China (Granted No. 2015AA042504), the National Natural Science Foundation of China (Granted No. 51474156) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Q., Guo, Q., Liu, Y. et al. Thermodynamic and kinetic evidence for MgO formation and pinning behavior in glycine-doped MgB2 bulks. J Mater Sci 51, 2665–2676 (2016). https://doi.org/10.1007/s10853-015-9580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9580-1

Keywords

Navigation