Log in

Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work reports the synthesis of zinc oxide (ZnO) nanoparticles with hexagonal wurtzite structure considering a solvothermal method assisted by microwave radiation and using different solvents: water (H2O), 2-ethoxyethanol (ET) and ethylene glycol (EG). The structural characterization of the produced ZnO nanoparticles has been accessed by scanning electron microscopy, X-ray diffraction, room-temperature photoluminescence and Raman spectroscopies. Different morphologies have been obtained with the solvents tested. Both H2O and ET resulted in rods with high aspect ratio, while EG leads to flower-like structure. The UV absorption spectra showed peaks with an orange shift for synthesis with H2O and ET and blue shift for synthesis with EG. The different synthesized nanostructures were tested for photocatalyst applications, revealing that the ZnO nanoparticles produced with ET degrade faster the molecule used as model dye pollutant, i.e. methylene blue.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys 16:R829–R858. doi:10.1088/0953-8984/16/25/R01

    Google Scholar 

  2. Coleman VA, Jagadish C (2006) Chapter 1—basic properties and applications of ZnO. In: Jagadish C, Pearton S (eds) Zinc oxide bulk, thin film. Nanostructures, Elsevier Science Ltd, Oxford, pp 1–20

    Chapter  Google Scholar 

  3. Fortunato E, Pimentel A, Pereira L et al (2004) High field-effect mobility zinc oxide thin film transistors produced at room temperature. J Non Cryst Solids 338–340:806–809. doi:10.1016/j.jnoncrysol.2004.03.096

    Article  Google Scholar 

  4. Fan Z, Wang D, Chang P-C et al (2004) ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett 85:5923–5925. doi:10.1063/1.1836870

    Article  Google Scholar 

  5. Pimentel A, Gonçalves A, Marques A et al (2006) Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors. J Non Cryst Solids 352:1448–1452. doi:10.1016/j.jnoncrysol.2006.02.022

    Article  Google Scholar 

  6. Guo L, Zhang H, Zhao D et al (2012) High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method. Sens Actuators B 166–167:12–16. doi:10.1016/j.snb.2011.08.049

    Article  Google Scholar 

  7. Gonçalves G, Pimentel A, Fortunato E et al (2006) UV and ozone influence on the conductivity of ZnO thin films. J Non Cryst Solids 352:1444–1447. doi:10.1016/j.jnoncrysol.2006.02.021

    Article  Google Scholar 

  8. Liu YY, Wang XY, Cao Y et al (2013) A flexible blue light-emitting diode based on ZnO nanowire/polyaniline heterojunctions. J Nanomater 2013:4. doi:10.1155/2013/870254

    Google Scholar 

  9. Monteiro RCC, Lopes AAS, Lima MMA et al (2012) Sintering, crystallization, and dielectric behavior of barium zinc borosilicate glasses—effect of barium oxide substitution for zinc oxide. J Am Ceram Soc 95:3144–3150. doi:10.1111/j.1551-2916.2012.05418.x

    Article  Google Scholar 

  10. Choi M-Y, Choi D, ** M-J et al (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21:2185–2189. doi:10.1002/adma.200803605

    Article  Google Scholar 

  11. Kumar B, Kim S-W (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342–355. doi:10.1016/j.nanoen.2012.02.001

    Article  Google Scholar 

  12. Chao C-H, Chan C-H, Huang J-J et al (2011) Manipulated the band gap of 1D ZnO nano-rods array with controlled solution concentration and its application for DSSCs. Curr Appl Phys 11:S136–S139. doi:10.1016/j.cap.2010.11.056

    Article  Google Scholar 

  13. Kao M-C, Chen H-Z, Young S-L et al (2012) Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells. Nanoscale Res Lett 7:1–6. doi:10.1186/1556-276x-7-260

    Article  Google Scholar 

  14. Zou X, Fan H, Tian Y, Yan S (2014) Synthesis of Cu 2 O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16:1149–1156. doi:10.1039/C3CE42144A

    Article  Google Scholar 

  15. Xu X, Chen D, Yi Z et al (2013) Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29:5573–5580. doi:10.1021/la400378t

    Article  Google Scholar 

  16. Sharma D, Rajput J, Kaith BS et al (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519:1224–1229. doi:10.1016/j.tsf.2010.08.073

    Article  Google Scholar 

  17. Pradhan D, Leung KT (2008) Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24:9707–9716. doi:10.1021/la8008943

    Article  Google Scholar 

  18. Yang J, Lin Y, Meng Y, Liu Y (2012) A two-step route to synthesize highly oriented ZnO nanotube arrays. Ceram Int 38:4555–4559. doi:10.1016/j.ceramint.2012.02.033

    Article  Google Scholar 

  19. Park J-A, Moon J, Lee S-J et al (2009) Fabrication and characterization of ZnO nanofibers by electrospinning. Curr Appl Phys 9:S210–S212. doi:10.1016/j.cap.2009.01.044

    Article  Google Scholar 

  20. Kripal R, Gupta AK, Srivastava RK, Mishra SK (2011) Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method. Spectrochim Acta Part A 79:1605–1612. doi:10.1016/j.saa.2011.05.019

    Article  Google Scholar 

  21. Raoufi D (2013) Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy 50:932–937. doi:10.1016/j.renene.2012.08.076

    Article  Google Scholar 

  22. Rodrigues J, Mata D, Fernandes AJS et al (2012) ZnO nanostructures grown on vertically aligned carbon nanotubes by laser-assisted flow deposition. Acta Mater 60:5143–5150. doi:10.1016/j.actamat.2012.06.005

    Article  Google Scholar 

  23. Lu C-H, Yeh C-H (2000) Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram Int 26:351–357. doi:10.1016/S0272-8842(99)00063-2

    Article  Google Scholar 

  24. Wirunmongkol T, O-Charoen N, Pavasupree S (2013) Simple hydrothermal preparation of zinc oxide powders using Thai Autoclave Unit. Energy Procedia 34:801–807. doi:http://dx.doi.org/10.1016/j.egypro.2013.06.816

  25. Pimentel A, Nunes D, Duarte P et al (2014) Synthesis of long ZnO nanorods under microwave irradiation or conventional heating. J Phys Chem C 118:14629–14639. doi:10.1021/jp5027509

    Article  Google Scholar 

  26. Shaporev AS, Ivanov VK, Baranchikov AE, Tret’yakov YD (2007) Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater 43:35–39. doi:10.1134/s0020168507010098

    Article  Google Scholar 

  27. Barreto GP, Morales G et al. (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater doi:10.1155/2013/478681

  28. Shouli B, Liangyuan C, Dianqing L et al (2010) Different morphologies of ZnO nanorods and their sensing property. Sens Actuators B 146:129–137. doi:10.1016/j.snb.2010.02.011

    Article  Google Scholar 

  29. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001. doi:10.1088/1468-6996/10/1/013001

    Article  Google Scholar 

  30. Yan H, He R, Pham J, Yang P (2003) Morphogenesis of one-dimensional ZnO nano- and microcrystals. Adv Mater 15:402–405. doi:10.1002/adma.200390091

    Article  Google Scholar 

  31. Li L, Pan S, Dou X et al (2007) Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes. J Phys Chem C 111:7288–7291. doi:10.1021/jp0711242

    Article  Google Scholar 

  32. Kunjara Na Ayudhya S, Tonto P, Mekasuwandumrong O et al (2006) Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst Growth Des 6:2446–2450. doi:10.1021/cg050345z

    Article  Google Scholar 

  33. Kanade KG, Kale BB, Aiyer RC, Das BK (2006) Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater Res Bull 41:590–600. doi:10.1016/j.materresbull.2005.09.002

    Article  Google Scholar 

  34. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews

    Google Scholar 

  35. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283. doi:10.1016/S0040-4020(01)00906-1

    Article  Google Scholar 

  36. Gabriel C, Gabriel S, Grant EH et al. (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213. doi:10.1039/a827213z

  37. Nemmaniwar BG, Kalyankar NV, Kadam PL (2013) Dielectric behaviour of binary mixture of 2-chloroaniline with 2-methoxyethanol and 2-ethoxyethanol. Orbital 5:1–6

    Google Scholar 

  38. Kappe CO (2013) How to measure reaction temperature in microwave-heated transformations. Chem Soc Rev 42:4977–4990. doi:10.1039/c3cs00010a

    Article  Google Scholar 

  39. Wahab R, Ansari SG, Kim YS et al (2009) The role of pH variation on the growth of zinc oxide nanostructures. Appl Surf Sci 255:4891–4896. doi:10.1016/j.apsusc.2008.12.037

    Article  Google Scholar 

  40. Cullity BD (2011) Elements of X ray diffraction. Addison-Wesley Publishing company, Inc

  41. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B 120:66–73. doi:10.1016/j.jphotobiol.2013.01.004

    Article  Google Scholar 

  42. Rezapour M, Talebian N (2011) Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: effect of synthesis methods and reaction media. Mater Chem Phys 129:249–255. doi:10.1016/j.matchemphys.2011.04.012

    Article  Google Scholar 

  43. Marques VS, Cavalcante LS, Sczancoski JC et al (2010) Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO 4 crystals and their optical properties. Cryst Growth Des 10:4752–4768. doi:10.1021/cg100584b

    Article  Google Scholar 

  44. Li W-J, Shi E-W, Zhong W-Z, Yin Z-W (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196. doi:10.1016/S0022-0248(99)00076-7

    Article  Google Scholar 

  45. Hai-Yong G, Fa-Wang Y, Yang Z et al (2008) Synthesis and characterization of ZnO nanoflowers grown on AlN films by solution deposition. Chin Phys Lett 25:640–643. doi:10.1088/0256-307X/25/2/077

    Article  Google Scholar 

  46. Dem’yanets LN, Li LE, Uvarova TG (2006) Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci 41:1439–1444. doi:10.1007/s10853-006-7457-z

  47. Dhanaraj G, Byrappa K, Prasad V, Dudley M (2010) Springer handbook of crystal growth. Springer, Heidelberg, p 1856

    Book  Google Scholar 

  48. Wen B, Huang Y, Boland JJ (2008) Controllable growth of ZnO nanostructures by a simple solvothermal process. J Phys Chem C 112:106–111. doi:10.1021/jp076789i

    Article  Google Scholar 

  49. Alenezi MR, Alshammari AS, Jayawardena KDGI et al (2013) Role of the exposed polar facets in the performance of thermally and UV Activated ZnO nanostructured gas sensors. J Phys Chem C 117:17850–17858. doi:10.1021/jp4061895

    Article  Google Scholar 

  50. Tong Y, Liu Y, Dong L et al (2006) Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. J Phys Chem B 110:20263–20267. doi:10.1021/jp063312i

    Article  Google Scholar 

  51. Singh S, Chakrabarti P (2013) Comparison of the structural and optical properties of ZnO thin films deposited by three different methods for optoelectronic applications. Superlattices Microstruct 64:283–293. doi:10.1016/j.spmi.2013.09.031

    Article  Google Scholar 

  52. Rajalakshmi M, Arora AK, Bendre BS, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445–2448. doi:10.1063/1.372199

    Article  Google Scholar 

  53. Li C, Lv Y, Guo L et al (2007) Raman and excitonic photoluminescence characterizations of ZnO star-shaped nanocrystals. J Lumin 122–123:415–417. doi:10.1016/j.jlumin.2006.01.173

    Article  Google Scholar 

  54. Chen SJ, Liu YC, Lu YM et al (2006) Photoluminescence and Raman behaviors of ZnO nanostructures with different morphologies. J Cryst Growth 289:55–58. doi:10.1016/j.jcrysgro.2005.10.137

    Article  Google Scholar 

  55. Pankove JI (1971) Optical processes in semiconductors. Dover Publications Inc, New Jersey

    Google Scholar 

  56. Wischmeier L, Voss T, Rückmann I et al (2006) Dynamics of surface-excitonic emission in ZnO nanowires. Phys Rev B 74:195333. doi:10.1103/PhysRevB.74.195333

    Article  Google Scholar 

  57. Li J, Fan H, Jia X et al (2009) Enhanced blue-green emission and ethanol sensing of Co-doped ZnO nanocrystals prepared by a solvothermal route. Appl Phys A 98:537–542. doi:10.1007/s00339-009-5489-3

    Article  Google Scholar 

  58. Rodrigues J, Holz T, Allah RF et al (2015) Effect of the N2 and H2 plasma treatments on band edge emission of ZnO microrods. Sci Rep. doi:10.1038/srep10783

    Google Scholar 

  59. Bujdák J, Komadel P (1997) Interaction of methylene blue with reduced charge montmorillonite. J Phys Chem B 101:9065–9068. doi:10.1021/jp9718515

    Article  Google Scholar 

  60. Baruah S, Sinha SS, Ghosh B et al (2009) Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308. doi:10.1063/1.3100221

    Article  Google Scholar 

  61. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. doi:10.1016/j.jhazmat.2007.12.033

    Article  Google Scholar 

  62. Dodd AC, McKinley AJ, Saunders M, Tsuzuki T (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J Nanoparticle Res 8:43–51. doi:10.1007/s11051-005-5131-z

    Article  Google Scholar 

  63. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098. doi:10.1007/s12274-011-0160-7

    Article  Google Scholar 

  64. McLaren A, Valdes-Solis T, Li G, Tsang SC (2009) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131:12540–12541. doi:10.1021/ja9052703

    Article  Google Scholar 

  65. Smallwood IM (1996) Ethylene glycol ethyl ether. In: Handbook of organic solvent properties. Wiley, pp 127–129

Download references

Acknowledgements

This work has been financed by the European Commission under Projects INVISIBLE (FP7 ERC AdG No 228144), and ORAMA CP-IP 246334-2, by FEDER funds through the COMPETE 2020 programme and the Portuguese Science Foundation (FCT-MEC) through BPD/76992/2011 and the Projects UID/CTM/50025/2013, EXCL/CTM-NAN/0201/2012, PTDC/CTM-POL/1484/2012, RECI/FIS-NAN/0183/2012 (FCOMP-01-0124-FEDER- 027494). J. Rodrigues thanks FCT for her PhD Grant, SFRH/BD/76300/2011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Pimentel or E. Fortunato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, A., Rodrigues, J., Duarte, P. et al. Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. J Mater Sci 50, 5777–5787 (2015). https://doi.org/10.1007/s10853-015-9125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9125-7

Keywords

Navigation