Log in

Structural aspects of changes induced in PbTe by do** with Mn, In and Ga

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper presents the extended results of structural investigations of Pb0.9Mn0.1Te, and Pb0.9Mn0.1Te systems doped with In (2 at.%) and Ga (4 at.%) by means of EXAFS (extended X-ray absorption fine structure) technique. EXAFS measurements performed at Te–, Mn–, In– and Ga–K absorption edges at different temperatures are complemented with X-ray diffraction, flame absorption and X-ray fluorescence analysis. That way the complete information about elemental concentration; crystal structure; local environment around constitutive and impurity atoms (including their displacements from the regular lattice positions); local and long-range ordering; and the overall influence of do** on the host crystal structure is derived. The obtained results represent an important step towards understanding the structural aspects of do** of lead telluride-based semiconductors with Mn and group III elements and their connection to electronic and optical phenomena important for their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Khokhlov D (2003) In: Manasreh MO (ed) Optoelectronic properties of semiconductors and superlattices, vol 18. Taylor and Francis, New York

    Google Scholar 

  2. Skrabek EA, Trimmer DS (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton

    Google Scholar 

  3. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303:818

    Article  CAS  Google Scholar 

  4. Dughaish JH (2002) Phys B 322:205

    Article  CAS  Google Scholar 

  5. Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ (2011) Nature 473:9

    Article  Google Scholar 

  6. Yang Y, Li W, Yu L, Sun X, Xu L, Hou L (1997) Infrared Phys Technol 38:9

    Article  CAS  Google Scholar 

  7. Wang X, Koleilat GI, Tang J, Liu H, Kramer IJ, Debnath R, Brzozowski L, Barkhouse DAR, Levina L, Hoogland S, Sorgent EH (2011) Nat Photonics 5:480

    Article  CAS  Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koda T, Ying JY (1999) Microscale Thermophys Eng 3:89

    Article  CAS  Google Scholar 

  9. Osinniy V, Jędrzejczak A, Domuchowski W, Dybko K, Witkowska B, Story T (2005) Acta Phys Pol A 108:809

    CAS  Google Scholar 

  10. Clemens H, Weilguni PC, Stromberger U, Bauer G (1989) J Vac Sci Technol A 7:3197

    Article  CAS  Google Scholar 

  11. Morozov AV, Kozhanov AE, Artamkin AI, Slyn’ko EI, Slyn’ko VE, Dobrovolski WD, Story T, Khokhlov DR (2004) Semiconductors 38:27

    Article  CAS  Google Scholar 

  12. Korczak Z, Subotowicz M (1983) Phys Status Solidi A 77:497

    Article  CAS  Google Scholar 

  13. Mukesh KJ (1991) Diluted magnetic semiconductors. World Scientific Publishing, Singapore

    Google Scholar 

  14. Volkov BA, Rabova LI, Khokhlov DR (2002) Phys Usp 45:819

    Article  CAS  Google Scholar 

  15. Skipetrov EP, Zvereva EA, Volkova OS, Slyn’ko EI, Mousalitin AM (2002) Mater Sci Eng B 91–92:416

    Article  Google Scholar 

  16. Neuwirth J, Jantsch W, Palmetshofer L, Zulehner W (1986) J Phys C 19:2475

    Article  CAS  Google Scholar 

  17. Herrmann KH, Möllmann K-P (1985) Phys Status Solidi A 91:K147

    Article  CAS  Google Scholar 

  18. Lebedev A, Sluchinskaya I (2004) Ferroelectrics 298:189

    Article  CAS  Google Scholar 

  19. Akimov BA, Brandt NB, Klimonskiy SO, Ryabova LI, Khoklov DR (1982) Phys Lett A 88:483

    Article  Google Scholar 

  20. Wang Z, Bunker BA (1992) Phys Rev B 46:11277

    Article  CAS  Google Scholar 

  21. Ravel B, Cockayne E, Newville M, Rabe KM (1999) Phys Rev B 60:14632

    Article  CAS  Google Scholar 

  22. Lebedev AI, Sluchinskaya IA, Demin VN, Munro IH (1997) Phys Rev B 55:14770

    Article  CAS  Google Scholar 

  23. Radisavljević I, Ivanović N, Novaković N, Romčević N, Mahnke H-E (2007) X-ray Spectrom 36:150

    Article  Google Scholar 

  24. Ahmad S, Hoang K, Mahanti SD (2006) Phys Rev Lett 96:056403

    Article  Google Scholar 

  25. Mahanti SD, Hoang K, Ahmad S (2007) Phys B 401–402:291

    Article  Google Scholar 

  26. Weiser K (1981) Phys Rev B 23:2741

    Article  CAS  Google Scholar 

  27. Romčević N, Golubović A, Romčević M, Trajić J, Nikolić S, Đurić S, Nikiforov VN (2005) J Alloy Compd 402:36

    Article  Google Scholar 

  28. Ravel B (2001) J Synchrotron Radiat 8:314

    Article  CAS  Google Scholar 

  29. Newville M, Lıviņš P, Yacoby Y, Rehr JJ, Stern EA (1993) Phys Rev B 47:14126

    Article  CAS  Google Scholar 

  30. Stern EA, Newville M, Ravel B, Yacoby Y, Haskel D (1995) Phys B 208–209:117

    Article  Google Scholar 

  31. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Phys Rev B 58:7565

    Article  CAS  Google Scholar 

  32. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  33. Newville M (2001) J Synchrotron Radiat 8:322

    Article  CAS  Google Scholar 

  34. Ravel B (2012) EXAFS analysis with FEFF and FEFFIT, http://cars9.uchicago.edu/~ravel/course/. Accessed 15 Mar 2012

  35. Koningsberger DC, Prins R (1987) X-ray absorption-principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, Chichester

    Google Scholar 

  36. Michalowicz A, Provost K, Laruelle S, Mimouni A, Vlaic G (1999) J Synchrotron Radiat 6:233

    Article  CAS  Google Scholar 

  37. McKale AG, Veal BW, Paulikas AP, Chan S-K, Knapp GS (1988) Phys Rev B 38:10919

    Article  CAS  Google Scholar 

  38. Weast RC (ed) (1988) CRC handbook of chemistry and physics, 1st Student edn. CRC Press, Boca Raton

  39. Mikkelsen JC Jr, Boyce JB (1983) Phys Rev B 28:7130

    Article  CAS  Google Scholar 

  40. Boyce JB, Mikkelsen JC Jr (1985) Phys Rev B 31:6903

    Article  CAS  Google Scholar 

  41. Lebedev AI, Sluchinskaya IA, Demin VN, Munro I (1999) Phys Solid State 41:1275

    Article  CAS  Google Scholar 

  42. Rogacheva EI, Sinelnik NA, Krivulkin IM (2002) Semicond Phys Quantum Electron Optoelectron 5:368

    CAS  Google Scholar 

  43. Rogacheva EI, Krivulkin IM (2002) Semiconductors 36:966

    Article  CAS  Google Scholar 

  44. Houston B, Strakna RE, Belson HS (1968) J Appl Phys 39:3913

    Article  CAS  Google Scholar 

  45. Zhang Y, Ke X, Chen C, Yang J, Kent PRC (2009) Phys Rev B 80:024304

    Article  Google Scholar 

  46. Božin E, Malliakas CD, Souvatzis P, Proffen T, Spaldin NA, Kanatzidis MG, Billinge SJL (2010) Science 330:1660

    Article  Google Scholar 

  47. Delaire O, Ma J, Marty K, May AF, McGuire MA, Du M-H, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales BC (2011) Nat Mater 10:614

    Article  CAS  Google Scholar 

  48. Girifalco L (2000) Statistical mechanics of solids. Oxford University Press, Oxford

    Google Scholar 

  49. Lebedev AI, Michurin AV, Sluchinskaya IA, Demin VN, Munro IH (2000) J Phys Chem Solids 61:2007

    Article  CAS  Google Scholar 

  50. Lebedev AI, Sluchinskaya IA, Demin VN (1997) Daresbury laboratory scientific reports, pp 248

  51. Raebiger H, Lany S, Zunger A (2008) Nature 453:763

    Article  CAS  Google Scholar 

  52. Freik DM, Boichuk VM, Mezhilovskaya LI (2004) Inorg Mater 40:1026

    Article  CAS  Google Scholar 

  53. Shannon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge HASYLAB @ DESY for providing the beam time, and Dr. E. Welter and M. Herrman for their assistance during EXAFS measurements. This work was supported by Serbian Ministry of Education, Science and Technological Development under the Grant III 45003-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Radisavljević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radisavljević, I., Ivanović, N., Novaković, N. et al. Structural aspects of changes induced in PbTe by do** with Mn, In and Ga. J Mater Sci 48, 8084–8100 (2013). https://doi.org/10.1007/s10853-013-7621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7621-1

Keywords

Navigation