Log in

High-temperature thin-film calorimetry: a newly developed method applied to lithium ion battery materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A thin-film calorimeter has been developed to investigate the thermodynamic properties of thin films including battery layer sequences. A new approach, i.e., the application of high-temperature stable piezoelectric resonators as highly sensitive planar temperature sensor, is chosen. Thin films with a thickness of several micrometers of the material of interest are deposited on the resonators. The production or consumption of latent heat by the active layer(s) results in temperature fluctuations with respect to surroundings, in our case the furnace in which the sensor is placed. The temperature fluctuations can be easily monitored in situ via changes of the resonance frequency of the resonator. This enables us to extract the temperature and time dependence of phase transformations as well as the associated enthalpies. To cover a temperature range from −20 to 1000 °C, high-temperature stable piezoelectric langasite (La3Ga5SiO14) resonators are applied. Initially, aluminum and tin layers are used to test the calorimeter. The temperature and enthalpy of the solid–liquid phase transformation agree well with the literature data. Further, the thermodynamic data of the battery materials to be used as cathode, solid electrolyte, and anode in lithium ion batteries are investigated by the newly developed method. The cathode materials Li(Ni0.8Co0.15Al0.05)O2-δ (NCA) and LiMn2O4-δ (LMO) are amorphous after deposition and crystallize during heating. NCA shows this transformation at 455 °C with an enthalpy of −4.8 J/g. LMO undergoes three phase transformations at 330, 410 and 600 °C. They require initially an activation which is followed by an exothermic enthalpy. The associated energies (activation; enthalpy) are (+67.2; −50.2) J/g, (+29.3; −29.3) J/g, and (+20.4; −26.2) J/g, respectively. The solid electrolyte Li3.4V0.6Si0.4O4-δ (LVSO) shows no phase transformation up to its decomposition at about 220 °C. The anode material molybdenum disulfide (MoS2) exhibits a phase transformation at 480 °C with an enthalpy of −183.2 J/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8:320

    Article  CAS  Google Scholar 

  2. Joho F, Novák P, Spahr ME (2002) J Electrochem Soc 149(8):A1020

    Article  CAS  Google Scholar 

  3. Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H (1999) J Electrochem Soc 146(3):947

    Article  CAS  Google Scholar 

  4. Balaya P (2008) Energy Environ Sci 1:645

    Article  CAS  Google Scholar 

  5. Chen X, Li C, Grätzel M, Kostecki R, Mao SS (2012) Chem Soc Rev 41:7909

    Article  CAS  Google Scholar 

  6. Zhang Z, Fouchard D, Rea JR (1998) J Power Sources 70:16

    Article  CAS  Google Scholar 

  7. Wakihara M (2001) Mater Sci Eng R33:109

    CAS  Google Scholar 

  8. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  9. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) J Power Sources 147:269

    Article  CAS  Google Scholar 

  10. Vetter J, Winter M, Wohlfahrt-Mehrens M (2009) In: Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B (eds) Encyclopedia of Electrochemical Power Sources. Elsevier, Amsterdam

    Google Scholar 

  11. Amatucci GG, Pereira N, Zheng T, Tarascon JM (2001) J Electrochem Soc 148:A171

    Article  CAS  Google Scholar 

  12. Palomares V, Rojo T (2012) In: Ilias Belharouak (Ed), Lithium Ion Batteries—New Developments, InTech, ISBN: 978-953-51-0077-5

  13. Fritze H (2011) Meas Sci Technol 22:012002

    Article  Google Scholar 

  14. Ohtsuka H, Yamaki J (1989) Jpn J Appl Phys 28:2264

    Article  CAS  Google Scholar 

  15. Kuwata N, Kawamura J, Toribami K, Sata N, Hattori T (2004) Electrochem Commun 6(4):417

    Article  CAS  Google Scholar 

  16. Kawamura J, Kuwata N, Toribami K, Sata N, Kamishima O, Hattori T (2004) Solid State Ion 175:273

    Article  CAS  Google Scholar 

  17. Kuwata N, Kumar R, Toribami K, Suzuki T, Hattori T, Kawamura J (2006) Solid State Ion 177:2827

    Article  CAS  Google Scholar 

  18. Kuwata N, Iwagami N, Kawamura J (2009) Solid State Ion 180:644

    Article  CAS  Google Scholar 

  19. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  20. Kostecki R, McLarnon F (2004) Electrochem Solid State Lett 7(10):A380

    Article  CAS  Google Scholar 

  21. Fischer J, Adelhelm C, Bergfeldt T, Chang K, Ziebert C, Leiste H, Stüber M, Ulrich S, Music D, Hallstedt B, Seifert HJ (2012) Thin Solid Films 528:217

    Article  Google Scholar 

  22. Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Nature 392:694

    Article  CAS  Google Scholar 

  23. Yoshio M, Noguchi H (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Lithium-ion batteries: science and technologies. Springer, New York

    Chapter  Google Scholar 

  24. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  25. Xu B, Fell CR, Chi M, Meng YS (2011) Energy Environ Sci 4:2223

    Article  CAS  Google Scholar 

  26. Hy S, Su WN, Chen JM, Hwang BJ (2012) J Phys Chem C 116(48):25242

    Article  CAS  Google Scholar 

  27. Ceder G, Mishra SK (1999) Electrochem Solid-State Lett 2(11):550

    Article  CAS  Google Scholar 

  28. Feng C, Ma J, Li H, Zeng R, Guo Z, Liu H (2009) Mater Res Bull 44(9):1811

    Article  CAS  Google Scholar 

  29. Li A, Liu H, Zhu Z, Huang M, Yang Y (2006) J Mater Sci Technol 22(1):40

    Google Scholar 

  30. Dominko R, Arcon D, Mrzel A, Zorko A, Cevc P, Venturini P, Gaberscek M, Remskar M, Mihailovic D (2002) Adv Mater 14(21):1531

    Article  CAS  Google Scholar 

  31. Huggins RA (1999) J Power Sources 18–19:13

    Article  Google Scholar 

  32. Scrosati B (2000) Electrochim Acta 45(5–16):2461

    Article  CAS  Google Scholar 

  33. Hassoun J, Scrosati B (2010) Angew Chem 122:2421

    Article  Google Scholar 

  34. Au M, McWhorter S, Ajo H, Adams T, Zhao Y, Gibbs J (2010) J Power Sources 195(10):3333

    Article  CAS  Google Scholar 

  35. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) J Power Sources 97–98:185

    Article  Google Scholar 

  36. Schneider T, Richter D, Doerner S, Fritze H, Hauptmann P (2005) Sens Actuators B 111–112:187

    Article  Google Scholar 

  37. Albrecht D, Wulfmeier H, Ivanov S, Bund A, Fritze H (2013) MRS Proceedings 1496. doi:10.1557/opl.2013.126

  38. Kong H, Wang J, Zhang H, Yin X, Zhang S, Liu Y, Cheng X, Gao L, Hu X, Jiang M (2003) J Cryst Growth 254:360

    Article  CAS  Google Scholar 

  39. Lide DR (2003) CRC Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca Raton

    Google Scholar 

  40. Fritze H, Tuller HL (2002) High-temperature balance. US Patent No 6 370 955

  41. Wilthan B (2013) Status of round robin tests. Workshop of the GEFTA thermophysics working group, Dresden, March 18–19

  42. Wojtczak L (1967) Phys Stat Sol 23:K163

    Article  CAS  Google Scholar 

  43. Sauerbrey G (1959) Zeitschrift für Physik A 155:206

    Article  CAS  Google Scholar 

  44. Yoon WS, Chung KY, McBreen J, Yang XQ (2006) Electrochem Comm 8:1257

    Article  CAS  Google Scholar 

  45. JCPDS database, pdf card number 000271252

  46. JCPDS database, pdf card number 000350782

  47. Julien CM, Massot M (2003) Mater Sci Eng B97:217

    Article  CAS  Google Scholar 

  48. Julien CM, Massot M (2003) Mater Sci Eng B100:69

    Article  CAS  Google Scholar 

  49. Kuchling H (1978) Taschenbuch der Physik. Verlag Harri Deutsch, Thun

    Google Scholar 

  50. Hollemann AF, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102nd edn. Walter de Gruyter, Berlin

    Book  Google Scholar 

  51. Ravelo R, Baskes M (1997) Phys Rev Lett 79(13):2482

    Article  CAS  Google Scholar 

  52. Wolf G, Schmidt H-G, Bohmhammel K (1994) Thermochim Acta 235:23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the German Research Foundation (DFG) for the financial support within the priority program 1473 “WeNDeLIB”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Wulfmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulfmeier, H., Albrecht, D., Ivanov, S. et al. High-temperature thin-film calorimetry: a newly developed method applied to lithium ion battery materials. J Mater Sci 48, 6585–6596 (2013). https://doi.org/10.1007/s10853-013-7455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7455-x

Keywords

Navigation