Log in

Improving bioactivity and durability of yttria-stabilized zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Because of its excellent mechanical properties, yttria-stabilized zirconia is currently used as an orthopedic and dental material. In this study, we have improved the bioactivity of yttria-stabilized zirconia by a combination of electrical polarization and chemical treatment. The phase transformation from tetragonal to monoclinic ZrO2 after alkaline treatment was inhibited on positively charged yttria-stabilized zirconia surfaces compared with negatively charged and conventional surfaces. During polarization, some oxide ions move from the positively charged surface to the negatively charged surface, leading to an increase in oxygen vacancies on the positive surface and hence greater formation of Zr–OH when this surface was exposed to alkaline solution. This then reduced the water adsorption at this surface and consequently reduced the rate of cleavage of Zr–O–Zr bonds. The bioactivity was assessed by immersing the samples in simulated body fluid and evaluating the growth of apatite on the surfaces. The combination of polarization and alkaline treatment increased the bioactivity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang Y, Ong JL, Tian J (2003) Biomaterials 24:619

    Article  CAS  Google Scholar 

  2. Li J, Hastings GW (1998) Handbook of biomaterials properties. Chapman and Hall, New York, p 321

    Google Scholar 

  3. Chevalier J, Aza AHD, Fantozzi G, Schehl M, Torrecillas R (2000) Adv Mater 12:1619

    Article  CAS  Google Scholar 

  4. Chevalier J (2006) Biomaterials 27:535

    Article  CAS  Google Scholar 

  5. Yamashita K, Oikawa N, Umegaki T (1996) Chem Mater 12:2697

    Article  Google Scholar 

  6. Yamashita K, Nakamura S (2005) J Ceram Soc Jpn 113:1

    Article  Google Scholar 

  7. Nakamura S, Takeda H, Yamashita K (2001) J Appl Phys 89(10):5386

    Article  CAS  Google Scholar 

  8. Tanaka Y, Iwasaki T, Nakamura M, Nagai A, Katayama K, Yamashita K (2010) J Appl Phys 107:014107

    Article  Google Scholar 

  9. Kobayashi T, Nakamura S, Yamashita K (2001) J Biomed Mater Res 57(4):477

    Article  CAS  Google Scholar 

  10. Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K (2006) Calcified Tissue Int 78(3):133

    Article  CAS  Google Scholar 

  11. Nagai A, Yamashita K, Imamura M, Azuma H (2008) Life Sci 82(23–24):1162

    Article  CAS  Google Scholar 

  12. Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) J Biomed Mater Res Appl Biomater B 90:641

    Article  Google Scholar 

  13. Nakamura M, Nakamura S, Sekijima Y, Niwa K, Kobayashi T, Yamashita K (2006) J Biomed Mater Res A 79(3):627

    Article  Google Scholar 

  14. Nakamura M, Nagai A, Hentunen T, Salonen J, Sekijima Y, Okura T, Hashimoto K, Toda Y, Monma H, Yamashita K (2009) ACS Appl Mater Interfaces 1(10):2181

    Article  CAS  Google Scholar 

  15. Sato T, Ohtaki S, Shimada M (1985) J Mater Sci 20:1466. doi:https://doi.org/10.1007/BF01026344

    Article  CAS  Google Scholar 

  16. Sato T, Shimada M (1985) J Am Ceram Soc 68:356

    Article  CAS  Google Scholar 

  17. Chevalier J, Deville S, Munch E, Jullian R, Lair F (2004) Biomaterials 25:5539

    Article  CAS  Google Scholar 

  18. Kobayashi K, Kuwajima H, Masaki Y (1981) Solid State Ionics 3/4:489

    Article  Google Scholar 

  19. Sato T, Ohtaki S, Endo T, Shimada M (1986) J Mater Sci Lett 5:1140

    Article  CAS  Google Scholar 

  20. Lange FF, Dunlop GL, Davis BI (1986) J Am Ceram Soc 69:237

    Article  CAS  Google Scholar 

  21. Schmauder S, Schubert H (1986) J Am Ceram Soc 69:534

    Article  CAS  Google Scholar 

  22. Yohimura M (1988) Am Ceram Soc Bull 67:1950

    Google Scholar 

  23. Kim DJ, Jung HJ, Jang JW, Lee HL (1998) J Am Ceram Soc 81:2309

    Article  CAS  Google Scholar 

  24. Lin JD, Cuh JG, Lo CL (2001) Mater Chem Phys 77:808

    Article  Google Scholar 

  25. Tanaka K, Tamura J, Kawanabe K, Nawa M, Uchida M, Kokubo T, Nakamura T (2003) J Biomed Mater Res 67A:200

    Article  CAS  Google Scholar 

  26. Gutierrez-Gonzalez CF, Moya J, Palomares Bartolome JF (2010) J Am Ceram Soc 93:1842

    CAS  Google Scholar 

  27. Kim DJ, Lee MH, Lee FY, Han JS (2000) J Biomed Mater Res 53:438

    Article  CAS  Google Scholar 

  28. Djurado E, Boulc’h F, Dessemond L, Rosman N, Mermoux M (2004) J Electrochem Soc 151:A774

    Article  CAS  Google Scholar 

  29. Garvir RG, Nicholson PS (1972) J Am Ceram Soc 55:303

    Article  Google Scholar 

  30. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

  31. Uchida M, Kim HM, Kokubo T, Nawa M, Asano T, Tanaka K, Nakamura T (2002) J Biomed Mater Res 60:277

    Article  CAS  Google Scholar 

  32. Bauerle JE (1969) J Phys Chem of Solids 30:2657

    Article  CAS  Google Scholar 

  33. Lee J, Kim D (2001) J Mater Res 16–9:2739

    Article  Google Scholar 

  34. Martin MC, Mecartney ML (2003) Solid State Ionics 161:67

    Article  CAS  Google Scholar 

  35. Li JF, Watanabe R, Zhanf BP, Asami K, Hashimoto K (1996) J Am Ceram Soc 79:3109

    Article  CAS  Google Scholar 

  36. Sato T, Fujishiro H, Endo T, Shimada M (1987) J Mater Sci 22:882. doi:https://doi.org/10.1007/BF01103525

    Article  CAS  Google Scholar 

  37. Guo X (2003) J Am Ceram Soc 86:1867

    Article  CAS  Google Scholar 

  38. Guo X (2004) Chem Mater 16:3988

    Article  CAS  Google Scholar 

  39. Aza AHD, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Biomaterials 23:937

    Article  Google Scholar 

  40. Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T (2002) Biomaterials 23:313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Inuzuka, M., Hashimoto, K. et al. Improving bioactivity and durability of yttria-stabilized zirconia. J Mater Sci 46, 7335–7343 (2011). https://doi.org/10.1007/s10853-011-5695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5695-1

Keywords

Navigation