Log in

Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni–Al–Pt systems

  • Interface Science in Thermal Barrier Coatings
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The beneficial role played by platinum addition in promoting the formation of a protective Al2O3 scale on representative γ′-Ni3Al+γ-Ni coating compositions during high-temperature oxidation is discussed. This beneficial effect can be primarily ascribed to the fact that Pt is non-reactive, and its addition decreases the chemical activity of aluminum in γ′. Related to the latter, Pt partitions almost solely to the Ni sites in the ordered L12 crystal structure of γ′, which has the effect of amplifying the increase in the Al: Ni atom fraction on a given crystallographic plane containing both Al and Ni. Such an effective Al enrichment at the γ′surface kinetically favors the formation of Al2O3 relative to NiO. A further contributing factor is that the Pt-containing γ′-based alloys show subsurface Pt enrichment during the very early stages of oxidation. This enrichment reduces Ni availability and can increase the Al supply to the evolving scale, thus kinetically favoring Al2O3 formation. This observed benefit of Pt addition promoting exclusive Al2O3-scale growth is inferred to be a special form of the third-element effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smialek JL (2001) Surf Interface Anal 31:582

    Article  CAS  Google Scholar 

  2. Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Pollock TM et al (2000) International Symposium on Superalloys 2000, TMS, Champion, Pennsylvania

  4. Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505

    Article  Google Scholar 

  5. Levi CG (2004) Curr Opin Solid State and Mater Sci 8:77

    Article  CAS  Google Scholar 

  6. Gleeson B (2006) J Prop and Power 22:375

    Article  CAS  Google Scholar 

  7. Meier SM, Gupta DK (1994) Trans ASME 116:250

    Article  CAS  Google Scholar 

  8. Shillington EAG, Clarke DR (1999) Acta Mater 47:1297

    Article  CAS  Google Scholar 

  9. Barber B, Jordon E, Gell M, Geary A (1999) J Therm Spray Technol 8:79

    Article  CAS  Google Scholar 

  10. Karlsson AM, Hutchinson JW, Evans AG (2003) Mater Sci Eng A 351:244

    Article  Google Scholar 

  11. Nicholls JR (2003) MRS Bulletin 28:659

    Article  CAS  Google Scholar 

  12. Miracle DB (1993) Acta Metall Mater 41:649

    Article  CAS  Google Scholar 

  13. Doychak J (1984) In: Bailey GW (ed) Proceedings of the 42nd annual meeting of the electron microscopy society of America

  14. Grabke HJ, Brumm MW, Wagemann B (1996) Mater Corros 47:675

    Article  CAS  Google Scholar 

  15. Lehnert G, Meinhardt H (1972) Electrodepos Surf Treat 1:71

    Article  CAS  Google Scholar 

  16. Felten EJ (1976) Oxid Met 10:23

    Article  CAS  Google Scholar 

  17. Chen JH, Little JA (1997) Surf Coat Technol 92:69

    Article  CAS  Google Scholar 

  18. Cadoret Y, Bacos MP, Josso P, Maurice V, Marcus P, Zanna S (2004) Mater Sci Forum 461–464:247

    Article  Google Scholar 

  19. Hou PY, McCarty KF (2006) Scr Mater 54:937

    Article  CAS  Google Scholar 

  20. Zhang Y, Haynes JA, Lee WY, Wright IG, Pint BA, Cooley KM, Liaw PK (2001) Metall Mater Trans A 32A:1727

    Article  CAS  Google Scholar 

  21. Grabke HJ, Wiemer D, Viefhaus H (1991) Appl Surf Sci 47:243

    Article  CAS  Google Scholar 

  22. Pint BA (1997) Oxid Met 48:303

    Article  CAS  Google Scholar 

  23. Pint BA, Wright IG, Lee WY, Zhang Y, Prüßner K, Alexander KB (1998) Mater Sci Eng A 245:201

    Article  Google Scholar 

  24. Clarke DR, Levi CG (2003) Annu Rev Mater Res 33:383

    Article  CAS  Google Scholar 

  25. Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY (2003) Surf Coat Technol 163–164:19

    Article  Google Scholar 

  26. Waltson WS, Schaeffer JC, Murphy WH (1996) In: Kissinger RD et al (eds) International Symposium on Superalloys 1996, TMS, Champion, Pennsylvania

  27. Gleeson B, Wang W, Hayashi S, Sordelet D (2004) Mater Sci Forum 461–464:213

    Article  Google Scholar 

  28. Gleeson B et al (2007) US Patent 7,273,662

  29. Wood GC, Stott FH (1983) High Temp Corros NACE6 227

  30. Stott FH (1997) Mater Sci Forum 251–254:19

    Article  Google Scholar 

  31. Felten EJ, Pettit FS (1976) Oxid Met 10:189

    Article  CAS  Google Scholar 

  32. Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17:429

    Article  CAS  Google Scholar 

  33. Doychak JK, Mitchell TE, Smialek JL (1985) Mater Res Soc Symp Proc 39:475

    Article  CAS  Google Scholar 

  34. Prescott R, Graham MJ (1992) Oxid Met 38:233

    Article  CAS  Google Scholar 

  35. Lipkin DM, Clarke DR, Hollatz M, Bobeth M, Pompe W (1997) Corros Sci 39:231

    Article  CAS  Google Scholar 

  36. Hou PY, Paulikas AP, Veal BW (2004) Mater Sci Forum 461–464:671

    Article  Google Scholar 

  37. Doychak J (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, Chapter 43, vol 1. Wiley, New York

    Google Scholar 

  38. Pettit FS (1967) Trans Metall Soc AIME 239:1296

    CAS  Google Scholar 

  39. Brady MP, Gleeson B, Wright IG (2000) JOM 52:16

    Article  CAS  Google Scholar 

  40. Gesmundo F, Niu Y (1998) Oxid Met 50:1

    Article  CAS  Google Scholar 

  41. Whittle DP, Wood GC, Evans DJ, Scully DB (1967) Acta Metall 15:1747

    Article  CAS  Google Scholar 

  42. Clemens D, Quadakkers WJ, Singheiser L (1998) In: Hou PY, McNallan MJ, Oltra R, Opila EJ, Shores D (eds) High temperature corrosion and materials chemistry, vol 98–9. The Electrochemical Society, Pennington, NJ, p 134

    Google Scholar 

  43. Wright IG (1972) Metals and Ceramics Information Center Report MCIC–72-07

  44. Wallwork GR, Hed AZ (1971) Oxid Met 3:171

    Article  CAS  Google Scholar 

  45. Wagner C (1965) Corros Sci 5:751

    Article  CAS  Google Scholar 

  46. Stott FH, Wood GC, Stringer J (1995) Oxid Met 44:113

    Article  CAS  Google Scholar 

  47. Sauer JP, Rapp RA, Hirth JP (1982) Oxid Met 18:285

    Article  CAS  Google Scholar 

  48. Jackson PRS, Wallwork GR (1984) Oxid Met 21:135

    Article  CAS  Google Scholar 

  49. Guan SW, Smeltzer WW (1994) Oxid Met 42:375

    CAS  Google Scholar 

  50. Hagel WC (1965) Corros 21:316

    Article  CAS  Google Scholar 

  51. Coupland DR, Hall CW, McGill IR (1982) Platin Met Rev 26:186

    Google Scholar 

  52. Coupland DR, McGill IR, Corti CW, Selman GL (1980) Proc Environ Degrad High Temp Mater 2:26

    Google Scholar 

  53. Tatlock GJ, Hurd TJ (1984) Oxid Met 22:201

    Article  CAS  Google Scholar 

  54. Tatlock GJ, Hurd TJ (1990) Werkst Korros 41:710

    Article  CAS  Google Scholar 

  55. Tatlock GJ, Hurd TJ (1987) Platin Met Rev 31:26

    CAS  Google Scholar 

  56. Felten EJ (1976) Oxid Met 10:23

    Article  CAS  Google Scholar 

  57. Tatlock GJ, Hurd TJ, Punni JS (1987) Platin Met Rev 31:26

    CAS  Google Scholar 

  58. Jiang C, Sordelet DJ, Gleeson B (2006) Acta Mater 54:1147

    Article  CAS  Google Scholar 

  59. Hayashi S, Wang W, Sordelet DJ, Gleeson B (2005) Metall Mater Trans A 36A:1769

    Article  CAS  Google Scholar 

  60. Copland E (2007) J Phase Equilib Diffus 28:38

    Article  CAS  Google Scholar 

  61. Wilkinson D (2000) Mass transport in solids and fluids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  62. Hayashi S, Narita T, Gleeson B (2006) Mater Sci Forum 522–523:229

    Article  Google Scholar 

  63. Hayashi S, Ford SI, Young DJ, Sordelet DJ, Besser MF, Gleeson B (2005) Acta Mater 53:3319

    Article  CAS  Google Scholar 

  64. Qin F, Jiang C, Anderegg JW, Jenks CJ, Gleeson B, Sordelet DJ, Thiel PA (2007) Surf Sci 601:376

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support for this research from the Office of Naval Research is gratefully acknowledged. The authors particularly thank Dr. David Shifler, Program Manager, for providing the guidance and commitment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gleeson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, B., Mu, N. & Hayashi, S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni–Al–Pt systems. J Mater Sci 44, 1704–1710 (2009). https://doi.org/10.1007/s10853-009-3251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3251-z

Keywords

Navigation