Log in

Chemical interaction between Crofer 22 APU and mica-based gaskets under simulated SOFC conditions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mica gaskets and also composite gaskets containing compressive mica interlayers are under consideration as sealing materials in solid oxide fuel cells (SOFC). To study potential interactions between the interconnect steel Crofer22APU and the mineral phases vermiculite (exfoliated) (K,Mg,Fe)3(Si,Al)4O10(OH)2) and talc (Mg3Si4O10(OH)2), corrosion experiments were conducted in simulated SOFC conditions. The opposite walls of the gaskets were simultaneously exposed to air and wet H2. A substantial increase in the thickness of the oxide layers formed by the interconnect steel is observed with specimen containing talc. The Cr2O3/(Cr,Mn)3O4 duplex layer normally formed on the Crofer is replaced by a thicker (factor of 5–10) layer of a complex microstructure that is assumed to contain Cr2O3, (Cr,Mn,Mg,Fe)3O4 and Fe2O3 phases. The modified microstructure is found in the entire air manifold, with an increased thickness up to a distance of 300 μm from the mica. It is proposed that magnesium is the critical component responsible for the accelerated oxide formation. A decomposition of talc is observed, which is discussed as the mechanism for the release of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fergus JW (2005) J Power Sour 147:46

    Article  CAS  Google Scholar 

  2. Ley KL, Krumpelt M, Kumar R, Meiser JH, Bloom I (1996) J Mater Res 11:1489

    Article  CAS  Google Scholar 

  3. Ohara S, Mukai K, Fukui T, Sakaki Y (2001) J Ceram Soc Jap 109:186

    Article  CAS  Google Scholar 

  4. Lahl N, Singheiser L, Hilpert K, Singh K, Baradur D (1999) In: Electrochemical society proceedings, vol 99, p 1057

  5. Chou Y-S, Stevenson JW, Chick LA (2003) J Am Ceram Soc 86:1003

    Article  CAS  Google Scholar 

  6. Bram M, Reckers S, Drinovac P, Moench J, Steinbrech RW, Buchkremer HP, Stoever D (2003) Proc Electrochem Soc. 2003–2007 (SOFC VIII) 888

  7. Bram M, Reckers S, Drinovac P, Moench J, Steinbrech RW, Buchkremer HP, Stoever D (2004) J Power Sour 138:111

    Article  CAS  Google Scholar 

  8. Chou Y-S, Stevenson JW (2005) J Power Sour 140:340

    Article  CAS  Google Scholar 

  9. Wiener F, Behr W, Bram M, Buchkremer HP, Steinbrech RW (2005) Poster presentation, 9th Grove Fuel Cell Symposium, London, UK

    Google Scholar 

  10. Weiß R, Peck D, Mille M, Hilpert K (1996) Proceedings of the 17th Risø International Symposium on Materials Science, Roskilde, Denmark, 1996, 479

  11. Matzsuzaki Y, Yasuda I (2001) J Electrochem Soc 148:A126–A131

    Article  Google Scholar 

  12. Haanappel VAC, Vinke IC, Wesermeyer H (2004) In: Proceedings of the 6th European SOFC Forum, Lucerne, Switzerland, 2004, 784

  13. Huczkowski P, Shemet V, Piron-Abellan J, Singheiser L, Quadakkers WJ, Christiansen N (2004) Mater Corros 55:825

    Article  CAS  Google Scholar 

  14. Speidel DH, Muan A (1963) J Am Ceram Soc 46:577

    Article  CAS  Google Scholar 

  15. ACersS-NIST Phase Equilibria Diagrams, CD-ROM Database, Version 3.0.1

  16. Bose K, Ganguly J (1995) Earth Planet Sci Lett 136:109

    Article  CAS  Google Scholar 

  17. Fumagalli P, Stixrude L, Poli S, Snyder D (2001) Earth Planet Sci Lett 186:125

    Article  CAS  Google Scholar 

  18. Wesolowsk M (1984) Thermochimica Acta 78:395

    Article  Google Scholar 

  19. MacKenzie KJD, Meinold RH (1994) Thermochimica Acta 244:195

    Article  CAS  Google Scholar 

  20. Shannon RD (1976) Acta Crystallogr A32:751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. Haanappel for conducting the experiments in the simulated SOFC environment, and M. Kappertz for the metallographic preparation. We would like to thank W.J. Quadakkers and P. Huczkowski for reference micrographs and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wiener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiener, F., Bram, M., Buchkremer, HP. et al. Chemical interaction between Crofer 22 APU and mica-based gaskets under simulated SOFC conditions. J Mater Sci 42, 2643–2651 (2007). https://doi.org/10.1007/s10853-006-1355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1355-2

Keywords

Navigation