Log in

Review on fluorescent sensors-based environmentally related toxic mercury ion detection

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Mercury is a frequent, bioaccumulative, extremely toxic pollutant in the environment. Mercury contamination can be accumulated along the food chain and cause a wide range of serious threats to living organisms, and also affect neurological systems and the kidneys. The trace-level detection of heavy and toxic metal ions such as mercury ions is certainly great intense. Chromogenic and fluorogenic recognition of toxic mercury ions has been established to be powerful methods due to their high detection limit, cost-efficiency, simplicity, and applicability in bioimaging. This review will mainly focus on the sensing mechanisms of fluorescent probes that have emerged over the past 5 years, such as PET, ICT, AIE, as well as ring-opening sensing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59

Similar content being viewed by others

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

References

  1. Liu, S., Wang, Y.M., Han, J.: Fluorescent chemosensors for copper(II) ion: structure, mechanism and application. J. Photochem. Photobiol. C 32, 78–103 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.06.002

    Article  CAS  Google Scholar 

  2. Kwon, N., Hu, Y., Yoon, J.: Fluorescent chemosensors for various analytes including reactive oxygen species, biothiol, metal ions, and toxic gases. ACS Omega 3, 13731–13751 (2018). https://doi.org/10.1021/acsomega.8b01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, D., Sedgwick, A., Gunnlaugsson, T., Akkaya, E., Yoon, J., James, T.D.: Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev. 46, 7105–7123 (2017). https://doi.org/10.1039/C7CS00240H

    Article  CAS  PubMed  Google Scholar 

  4. Bernhoft, R.A.: Mercury toxicity and treatment: a review of the literature. J. Environ. Public. Health. 2012, 460508 (2012). https://doi.org/10.1155/2012/460508

    Article  PubMed  Google Scholar 

  5. Saleh, T.A., Fadillah, G., Ciptawati, E., Khaled, M.: Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas. Trends Anal. Chem. 132, 116016 (2020). https://doi.org/10.1016/j.trac.2020.116016

    Article  CAS  Google Scholar 

  6. Berhanu, A.L., Gaurav, M.I., Malik, A., Aulakh, J., Kumar, V., Kim, K.-H.: A review of the applications of Schiff bases as optical chemical sensors. Trends Anal. Chem. 116, 74–91 (2019). https://doi.org/10.1016/j.trac.2019.04.025

    Article  CAS  Google Scholar 

  7. Udhayakumari, D., Naha, S., Velmathi, S.: Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013–15. Anal. Methods. 9, 552–578 (2017). https://doi.org/10.1039/C6AY02416E

    Article  CAS  Google Scholar 

  8. Udhayakumari, D., Velmathi, S.: Azo linked polycyclic aromatic hydrocarbons-based dual chemosensor for Cu2+ and Hg2+ ions. Ind. Eng. Chem. Res. 54, 3541–3547 (2015). https://doi.org/10.1021/acs.iecr.5b00775

    Article  CAS  Google Scholar 

  9. Zu, Y.R., Li, H., Shi, B.B., Qu, W.J., Zhang, Y.M., Lin, Q., Yao, H., Wei, T.B.: A reversible fluorescent chemosensor for the rapid detection of mercury ions (ii) in water with high sensitivity and selectivity. RSC Adv. 4, 61320–61323 (2014). https://doi.org/10.1039/C4RA09961C

    Article  Google Scholar 

  10. Samanta, T., Shunmugam, R.: Colorimetric and fluorometric probes for the optical detection of environmental Hg(II) and As(III) ions. Mater. Adv. 2, 64–95 (2021). https://doi.org/10.1039/D0MA00521E

    Article  CAS  Google Scholar 

  11. Liu, C., Chen, X., Zong, B., Mao, S.: Recent advances in sensitive and rapid mercury determination with graphene-based sensors. J. Mater. Chem. A. 7, 6616–6630 (2019). https://doi.org/10.1039/C9TA01009B

    Article  CAS  Google Scholar 

  12. Chen, G., Guo, Z., Zeng, G., Tang, L.: Fluorescent and colorimetric sensors for environmental mercury detection. Analyst. 140, 5400–5443 (2015). https://doi.org/10.1039/C5AN00389J

    Article  CAS  PubMed  Google Scholar 

  13. Peakall, D.B., Lovett, R.J.: Mercury: its occurrence and effects in the ecosystem. Bioscience 22, 20–25 (1972). https://doi.org/10.2307/1296180

    Article  CAS  Google Scholar 

  14. Bishop, K., Shanley, J.B., Riscassi, A., Wit, H.A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P.F., Webster, J., Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Sci. Total Environ. 721, 137647 (2020). https://doi.org/10.1016/j.scitotenv.2020.137647

    Article  CAS  PubMed  Google Scholar 

  15. Yeoh, T.S., Lee, A.S., Lee, H.S.: Absorption of mercuric sulphide following oral administration in mice. Toxicology 41, 107–111 (1986). https://doi.org/10.1016/0300-483X(86)90108-3

    Article  CAS  PubMed  Google Scholar 

  16. Mao, L., Liu, X., Wang, B., Lin, C., **n, M., Zhang, B.T., Wu, T., He, M., Ouyang, W.: Occurrence and risk assessment of total mercury and methylmercury in surface seawater and sediments from the Jiaozhou Bay, Yellow Sea. Sci. Total Environ. 714, 136539 (2020). https://doi.org/10.1016/j.scitotenv.2020.136539

    Article  CAS  PubMed  Google Scholar 

  17. Ackerman, J.T., Kraus, T.E.C., Fleck, J.A., Krabbenhoft, D.P., Horwath, W.R., Bachand, S.M., Herzog, M.P., Hartman, C.A., Bachand, P.A.M.: Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish. Environ. Sci. Technol. 49, 6304–6311 (2015). https://doi.org/10.1021/acs.est.5b00655

    Article  CAS  PubMed  Google Scholar 

  18. Escudero, L.B., Olsina, R.A., Wuilloud, R.G.: Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Talanta 116, 133–140 (2013). https://doi.org/10.1016/j.talanta.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z., Si, S., Luo, Z., Qin, T., Xu, Z., Liu, B.: An AIE-based fluorescent probe for detection of picric acid in water 50, 103–105 (2021). https://doi.org/10.1246/cl.200618

    Article  CAS  Google Scholar 

  20. Bahta, M., Ahmed, N.: An AIEE active 1, 8-naphthalimide- sulfamethizole probe for ratiometric fluorescent detection of Hg2+ ions in aqueous media. J. Photochem. Photobiol. A. 391, 112354 (2020). https://doi.org/10.1016/j.jphotochem.2020.112354

    Article  CAS  Google Scholar 

  21. Silpcharu, K., Sukwattanasinitta, M., Rashatasakhon, P.: Novel sulfonamidospirobifluorenes as fluorescent sensors for mercury(II) ion and glutathione. RSC Adv. 9, 11451–11458 (2019). https://doi.org/10.1039/C9RA00004F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, Y., Zhou, H., Chen, W., Sun, G., Sun, L., Su, J.: A simple AIE-based chemosensor for highly sensitive and selective detection of Hg2+ and CN-. Tetrahedron 72, 5620–5625 (2016). https://doi.org/10.1016/j.tet.2016.07.054

    Article  CAS  Google Scholar 

  23. He, T., Ou, W., Tang, B.Z., Qin, J., Tang, Y.: In vivo visualization of the process of Hg2+ bioaccumulation in water flea Daphnia carinata by a novel aggregation-induced emission fluorogen. Chem. Asian J. 14, 796–801 (2019). https://doi.org/10.1002/asia.201801538

    Article  CAS  PubMed  Google Scholar 

  24. Han, X., Lü, X., Chen, Z., Yu, G., Yin, J., Liu, S.: A Fluorescent probe for Hg2+ based on Gold(I) complex with an aggregation-induced emission feature. Chin. J. Chem. 33, 1064–1068 (2015). https://doi.org/10.1002/cjoc.201500324

    Article  CAS  Google Scholar 

  25. Ma, X.Q., Wang, Y., Wei, T.B., Qi, L.H., Jiang, X.M., Ding, J.D., Zhu, W.B., Yao, H., Zhang, Y.M., Lin, Q.: A novel AIE chemosensor based on quinoline functionalized Pillar[5]arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN. Dyes Pigm. 164, 279–286 (2019). https://doi.org/10.1016/j.dyepig.2019.01.049

    Article  CAS  Google Scholar 

  26. Wang, A., Yang, Y., Yu, F., Xue, L., Hu, B., Fan, W., Dong, Y.: A highly selective and sensitive fluorescent probe for quantitative detection of Hg2+ based on aggregation-induced emission features. Talanta 132, 864–870 (2015). https://doi.org/10.1016/j.talanta.2014.10.048

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, R.X., Li, P.F., Zhang, W.J., Li, N., Zhao, N.: A highly sensitive fluorescent sensor with aggregation-induced emission characteristics for the detection of iodide and mercury ions in aqueous solution. J. Mater. Chem. C 4, 10479–10485 (2016). https://doi.org/10.1039/C6TC03696A

    Article  CAS  Google Scholar 

  28. Ruan, Z., Shan, Y., Gong, Y., Wang, C., Ye, F., Qiu, Y., Liang, Z., Li, Z.: Novel AIE-active ratiometric fluorescent probes for mercury(II) based on the Hg2+-promoted deprotection of thioketal, and good mechanochromic properties. J. Mater. Chem. C. 6, 773–780 (2018). https://doi.org/10.1039/C7TC04712F

    Article  CAS  Google Scholar 

  29. Gabr, M.T., Pigge, F.C.: A turn-on AIE active fluorescent sensor for Hg2+ by combination of 1,1-bis(2-pyridyl)ethylene and thiophene/bithiophene fragments. Mater. Chem. Front. 1, 1654–1661 (2017). https://doi.org/10.1039/C7QM00085E

    Article  CAS  Google Scholar 

  30. Niu, C., Liu, Q., Shang, Z., Zhao, L.: Ouyang J Dual-emission fluorescent sensor based on AIE organic nanoparticles and au nanoclusters for the detection of mercury and melamine. Nanoscale 7, 8457–8465 (2015). https://doi.org/10.1039/C5NR00554J

    Article  CAS  PubMed  Google Scholar 

  31. Gupta, S., Milton, M.D.: Synthesis of novel AIEE active pyridopyrazines and their applications as chromogenic and fluorogenic probes for Hg2+ detection in aqueous media. N. J. Chem. 42, 2838–2849 (2018). https://doi.org/10.1039/C7NJ04573E

    Article  CAS  Google Scholar 

  32. Wang, K., Li, J., Ji, S., Li, L., Qiu, Z., Pan, C., Zhang, J., Huo, Y.: Fluorescence probes based on AIE luminogen: application for sensing Hg2+ in aqueous media and cellular imaging. N. J. Chem. 42, 13836–13846 (2018). https://doi.org/10.1039/C8NJ02245C

    Article  CAS  Google Scholar 

  33. Singh, P.K., Prabhune, A., Ogale, S.: Pulsed laser-driven molecular self-assembly of cephalexin: aggregation-induced fluorescence and its utility as a mercury ion sensor. Photochem Photobiol. 91, 1340–1347 (2015). https://doi.org/10.1111/php.12526

    Article  CAS  PubMed  Google Scholar 

  34. Wang, X., Gao, Z., Zhu, J., Gao, Z., Wang, F.: Aggregation-induced emission of cyanostilbene amphiphile as a novel platform for FRET-Based ratiometric sensing of mercury ion in water. Polym. Chem. 7, 5217–5220 (2016). https://doi.org/10.1039/C6PY01109H

    Article  CAS  Google Scholar 

  35. Fang, W., Zhang, G., Chen, J., Kong, L., Yang, L., Bi, H., Yang, J.: An AIE active probe for specific sensing of Hg2+ based on linearconjugated bis-Schiff base. Sens. Actuators B 229, 338–346 (2016). https://doi.org/10.1016/j.snb.2016.01.130

    Article  CAS  Google Scholar 

  36. Shyamal, M., Maity, S., Maity, A., Maity, R., Roy, S., Misra: A Aggregation induced emission based “turn-off” fluorescent chemosensor for selective and swift sensing of mercury (II) ions in water. Sens. Actuators B 263, 347–359 (2018). https://doi.org/10.1016/j.snb.2018.02.130

    Article  CAS  Google Scholar 

  37. Wang, J., Qian, X., Cui, J.: Detecting Hg2+ ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J. Org. Chem. 71, 4308–4311 (2006). https://doi.org/10.1021/jo052642g

    Article  CAS  PubMed  Google Scholar 

  38. Gao, Y., Ma, T., Ou, Z., Cai, W., Yang, G., Li, Y., Xu, M., Li, Q.: Highly sensitive and selective turn-on fluorescent chemosensors for Hg2+ based on thioacetal modified pyrene. Talanta 178, 663–669 (2018). https://doi.org/10.1016/j.talanta.2017.09.089

    Article  CAS  PubMed  Google Scholar 

  39. Darroudi, M., Ziarani, G.M., Ghasemi, J.B., Badiei, A.: Acenaphtoquinoxaline as a selective fluorescent sensor for Hg (II) detection: experimental and theoretical studies. Heliyon. 6, e04986 (2020). https://doi.org/10.1016/j.heliyon.2020.e04986

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lv, H., Yuan, G., Zhang, G., Ren, Z., He, H., Sun, Q., Zhang, X., Wang, S.: A novel benzopyran-based colorimetric and near-infrared fluorescent sensor for Hg2+ and its imaging in living cell and zebrafish. Dyes Pigm. 172, 107658 (2020). https://doi.org/10.1016/j.dyepig.2019.107658

    Article  CAS  Google Scholar 

  41. Li, C., Niu, Q., Wang, J., Wei, T., Li, T., Chen, J., Qin, X., Yang, Q.: Bithiophene-based fluorescent sensor for highly sensitive and ultrarapid detection of Hg2+ in water, seafood, urine and live cells. Spectrochim. Acta A. 233, 118208 (2020). https://doi.org/10.1016/j.saa.2020.118208

    Article  CAS  Google Scholar 

  42. Duan, X., Gu, B., Zhou, Q., Hu, X., Huang, L., Su, W., Li, H.: A simple fluorescent probe for detecting mercury(II) ion in aqueous solution and on agar gels. J. Iran. Chem. Soc. 14, 1207–1214 (2017). https://doi.org/10.1007/s13738-017-1071-7

    Article  CAS  Google Scholar 

  43. Sun, Y., Wang, L., Zhou, J., Qin, D., Duan, H.: A new phenothiazine-based fluorescence sensor for imaging Hg2+ in living cells, 34:e5945. Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5945

    Article  Google Scholar 

  44. Yin, P., Niu, Q., Yang, Q., Lan, L., Li, T.: A new “naked-eye” colorimetric and ratiometric fluorescent sensor for imaging Hg2+ in living cells. Tetrahedron 75, 130687 (2019). https://doi.org/10.1016/j.tet.2019.130687

    Article  CAS  Google Scholar 

  45. Lee, J.J., Kim, Y.S., Nam, E., Lee, S.Y., Lim, M.H., Him, C.: A PET-based fluorometric chemosensor for the determination of mercury(ii) and pH, and hydrolysis reaction-based colorimetric detection of hydrogen sulfide. Dalton Trans. 45, 5700–5712 (2016). https://doi.org/10.1039/C6DT00147E

    Article  CAS  PubMed  Google Scholar 

  46. Wang, J.H., Liu, Y.M., Dong, Z.M., Chao, J.B., Wang, H., Wang, Y., Shuang, S.: New colorimetric and fluorometric chemosensor for selective Hg2+ sensing in a near-perfect aqueous solution and bio-imaging. J. Hazard. Mater. 382, 121056 (2020). https://doi.org/10.1016/j.jhazmat.2019.121056

    Article  CAS  PubMed  Google Scholar 

  47. Maity, A., Sil, A., Nad, S., Patra, S.K.: A highly selective, sensitive and reusable BODIPY based ‘OFF/ON’ fluorescence chemosensor for the detection of Hg2+ ions. Sens. Actuators B 255, 299–308 (2018). https://doi.org/10.1016/j.snb.2017.08.016

    Article  CAS  Google Scholar 

  48. Mohan, B., Sharma, H.K.: Synthesis of calix[6]arene and transduction of its fur fural derivative as sensor for Hg(II) ions. Inorganica Chim. Acta. 486, 63–68 (2019). https://doi.org/10.1016/j.ica.2018.10.022

    Article  CAS  Google Scholar 

  49. Liu, D., Wang, Y., Wang, R., Wang, B., Chang, H., Chen, J., Yang, G., He, H.: Fluorescein-based fluorescent sensor with high selectivity for mercury and its imaging in living cells. Inorg. Chem. Commun. 89, 46–50 (2018). https://doi.org/10.1016/j.inoche.2018.01.016

    Article  CAS  Google Scholar 

  50. Ngororabanga, J.M.V., Moyo, C.B., Tshentu, Z.R.: A novel multidentate pyridyl ligand: a turn-on fluorescent chemosensor for Hg2+ and its potential application in real sample analysis. Spectrochim. Acta A. 242, 118651 (2020). https://doi.org/10.1016/j.saa.2020.118651

    Article  CAS  Google Scholar 

  51. Fern´andez-Alonso, S., Corrales, T., Pablos, J.L., Catalina, F.: A Switchable fluorescence solid sensor for Hg2+ detection in aqueous media based on a photo crosslinked membrane functionalized with (benzimidazolyl)methyl-piperazine derivative of 1,8-naphthalimide. Sens. Actuators B 270, 256–262 (2018). https://doi.org/10.1016/j.snb.2018.05.030

    Article  CAS  Google Scholar 

  52. Liu, D., Zhu, H., Shi, J., Deng, X., Zhang, T., Zhao, Y., Qi, P., Yang, G., He, H.: 1, 8-Naphthalimide-based fluorescent sensor with high selectivity and sensitivity for Hg2+ in aqueous solution and living cells. Anal. Methods. 11, 3150–3154 (2019). https://doi.org/10.1039/C9AY00711C

    Article  CAS  Google Scholar 

  53. Kraithong, S., Panchan, W., Charoenpanich, A., Sirirak, J., Sahasithiwat, S., Swanglap, P., Promarak, V., Thamyongkit, P., Wanichacheva, N.: A method to detect Hg2+ in vegetable via a “Turn–ON” Hg2+–fluorescent sensor with a nanomolar sensitivity. J. Photochem. Photobiol. A 389, 112224 (2020). https://doi.org/10.1016/j.jphotochem.2019.112224

    Article  CAS  Google Scholar 

  54. Bhaskar, R., Sarveswari, S.: Thiocarbohydrazide based Schiff base as a selective colorimetric and fluorescent chemosensor for Hg2+ with “Turn-Off” fluorescence responses. Chem. Select. 5, 4040–4057 (2020). https://doi.org/10.1002/slct.202000652

    Article  CAS  Google Scholar 

  55. Bag, S.S., De, S.: Pyrenylthioureayl alanine as a switch-on fluorescent sensor for Hg(II) ions. Anal. Chem. 3, 11758–11764 (2018). https://doi.org/10.1002/slct.201802249

    Article  CAS  Google Scholar 

  56. Saikia, D., Dutta, P., Sarma, N.S., Adhikary, N.C.: CdTe/ZnS core/shell quantum dot-based ultrasensitive PET sensor for selective detection of Hg (II) in aqueous media. Sens. Actuators B 230, 149–156 (2016). https://doi.org/10.1016/j.snb.2016.02.035

    Article  CAS  Google Scholar 

  57. Wu, L.L., Wang, Z., Zhao, S.N., Meng, X., Song, X.Z., Feng, J., Song, S.Y., Zhang, H.J.: A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem. Eur. J. 22, 477–480 (2016). https://doi.org/10.1002/chem.201503335

    Article  CAS  PubMed  Google Scholar 

  58. Marieeswaran, M., Panneerselvam, P.: Fluorescent polyaniline nanoclips (PANCs): a highly sensitive and selective chemical sensor for the detection of Hg (II) ions in aqueous media. Anal Chem. 5, 4481–4487 (2020). https://doi.org/10.1002/slct.202000545

    Article  CAS  Google Scholar 

  59. Bhatti, A.A., Oguz, M., Yilmaz, M.: New water soluble p-sulphonatocalix[4]arene chemosensor appended with rhodamine for selective detection of Hg2+ ion. J. Mol. Structure. 1203, 127436 (2020). https://doi.org/10.1016/j.molstruc.2019.127436

    Article  CAS  Google Scholar 

  60. Horzum, N., Mete, D., Karakus, E., Ucuncu, M., Emrullahoglu, M., Demir, M.M.: Rhodamine-immobilised electrospun chitosan nanofibrous material as a fluorescence turn-on Hg2+ sensor. Chem. Select. 5, 896–900 (2016). https://doi.org/10.1002/slct.201600027

    Article  CAS  Google Scholar 

  61. He, W., Liu, R., Liao, Y., Ding, G., Li, J., Liu, W., Wu, L., Feng, H., Shi, Z., He, M.: A new 1,2,3-triazole and its rhodamine B derivatives as a fluorescence probe for mercury ions. Anal. Biochem. 598, 113690 (2020). https://doi.org/10.1016/j.ab.2020.113690

    Article  CAS  PubMed  Google Scholar 

  62. Kunthom, R., Piyanuch, P., Wanichacheva, N., Ervithayasuporn, V.: Cage-like silsesequioxanes bearing rhodamines as highly sensitive and selective fluorescence Hg2+ sensors. J. Photochem. Photobiol. A. 356, 248–255 (2018). https://doi.org/10.1016/j.jphotochem.2017.12.033

    Article  CAS  Google Scholar 

  63. Yang, Y., Shen, R., Wang, Y.-Z., Qiu, F.-Z., Feng, Y., Tang, X.-L., Bai, D., Zhang, G.-L., Liu, W.-S.: A selective turn-on fluorescent sensor for Hg (II) in living cells and tissues. Sens. Actuators B. 255:3479–3487 (2018). https://doi.org/10.1016/j.snb.2017.09.180

    Article  Google Scholar 

  64. Wang, Q., **a, L., Wang, W., Hu, T., Chen, C.: Rhodamine derivatives as selective “naked-eye” colorimetric and fluorescence off-on sensor for Hg2+ in aqueous solution and its applications in bioimaging. J. Lumin. 209, 411–419 (2019). https://doi.org/10.1016/j.jlumin.2019.02.024

    Article  CAS  Google Scholar 

  65. Xu, X., Zheng, B., Deng, H., Zhang, X., Shuai, Q.: Synthesis and sensing behavior of a new multichannel sensor based on thiazolyl ferrocene-rhodamine for Hg2+ detection. Microchem. J. 158, 105257 (2020). https://doi.org/10.1016/j.microc.2020.105257

    Article  CAS  Google Scholar 

  66. Petdum, A., Faichu, N., Sirirak, J., Khammultri, P., Promarak, V., Panchan, W., Sooksimuang, T., Charoenpanich, A., Wanichacheva, N.: [5]Helicene-rhodamine 6 G hybrid-based sensor for ultrasensitive Hg2+ detection and its biological applications. J. Photochem. Photobiol. A. 394, 112473 (2020). https://doi.org/10.1016/j.jphotochem.2020.112473

    Article  CAS  Google Scholar 

  67. Tsai, H.-J., Wan, C.-F., Su, Y., Wu, A.-T.: A selective colorimetric fluorescent chemosensor for Hg2+ in aqueous medium and in the solid state. J. Lumin. 194, 279–283 (2018). https://doi.org/10.1016/j.jlumin.2017.10.023

    Article  CAS  Google Scholar 

  68. Bai, C.-B., Qiao, R., Liao, J.-X., **ong, W.-Z., Zhang, J., Chen, S.-S., Yang, S.: A highly selective and reversible fluorescence “OFF-ON-OFF” chemosensor for Hg2+ based on rhodamine-6G dyes derivative and its application as a molecular logic gate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 202, 252–259 (2018). https://doi.org/10.1016/j.saa.2018.05.050

    Article  CAS  PubMed  Google Scholar 

  69. Anandababu, A., Anandan, S., Ashokkumar, M.: A simple discriminating p-tert-butylcalix[4]arene thiospirolactam rhodamine b based colorimetric and fluorescence sensor for mercury ion and live cell imaging applications. Chem. Select. 3, 4413–4420 (2018). https://doi.org/10.1002/slct.201800044

    Article  CAS  Google Scholar 

  70. Hong, M., Chen, Y., Zhang, Y., Xu, D.: A novel rhodamine-based Hg2+ sensor with a simple structure and fine performance. Analyst. 144, 7351–7358 (2019). https://doi.org/10.1039/C9AN01608B

    Article  CAS  PubMed  Google Scholar 

  71. Gao, T., Lee, K.M., Kim, S.H., Heo, J., Yang, S.I.: A Mercuric ion selective fluorescent sensor based on rhodamine B with an ethylene unit. Bull. Korean Chem. Soc. 38, 292–295 (2017). https://doi.org/10.1002/bkcs.11078

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms the sole responsibility for the manuscript preparation.

Corresponding author

Correspondence to Duraisamy Udhayakumari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not Applicable.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udhayakumari, D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J Incl Phenom Macrocycl Chem 102, 451–476 (2022). https://doi.org/10.1007/s10847-022-01138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01138-1

Keywords

Navigation