Log in

Embedded Laser Vision System for Indoor Aerial Autonomous Navigation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

An embedded laser vision system for indoor autonomous navigation of an Unmanned Aerial Vehicle (UAV) is presented. The vision system is composed of a camera, a classical laser line and vision algorithms and it estimates its distance and its heading with respect to a wall placed in front of the camera frame. The image processing is executed onboard and the obtained measures are sent to the microprocessor to compute the control algorithms. A flight simulator is developed in order to validate the control strategy. Additionally, flight tests are carried out in order to prove the efficiency of the closed-loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forest, J., Salvi, J.: A review of laser scanning three-dimensional digitisers. In: Proceedings of the IEEE/RDJ Intl. Conference on Intelligent Robots and Systems. EPFL, Laussanne, Switzerland (2002)

    Google Scholar 

  2. Blais, F.: Review of 20 years of range sensor development. J. Electron. Imaging. 13(1), 231–240 (2004)

    Article  Google Scholar 

  3. Rocchini, C., Cignoni, P., Montani, C., **i, P., Scopigno, R.: A low cost 3D scanner based on structured light. Eurographics 20(3), 299–308 (2001)

    Google Scholar 

  4. Koninckx, T.P., Van Gool, L.: Real-time range acquisition by adaptive structured light. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 432–445 (2006)

    Article  Google Scholar 

  5. García Romero, M.A., Cárdenas Galindo, A., Rendón, J.M., González Galván, E.J.: A camera calibration method applied to vision based control of a manipulator robot. In: IEEE Latin American Robotic Symposium - IX Congreso Mexicano de Robotica (4th IEEE LARS 07 - IX COMRob 07) (2007)

  6. Kragic, D., Christensen, H.I.: Survey on visual servoing for manipulation. Research report. Centre for Autonomous Systems, Numerical Analysis and Computer Science, Fiskartorpsv. 15 A. 100 44 Stockholm, Sweden. http://www.nada.kth.se/~danik/VSpapers/report.pdf (2002)

  7. Kragic, D.: Visual servoing for manipulation: robustness and integration issues. Ph.D. thesis. CVAP-NADA, Royal Institute of Technology, Stockholm, Sweden. http://www.nada.kth.se/~danik/thesis.pdf.gz (2001)

  8. Khadraoui, D., Motyl, G., Martinet, P., Gallice, J., Chaumette F.: Visual Servoing in Robotics Scheme Using a Camera/Laser-Stripe Sensor. INRIA Rennes. Internal Publication No. 898. IRISA. ISSN 1166-8687 (1995)

  9. Sanderson, A.C., Weiss, L.E.: Adaptive visual servo control of robots. In: Pugh, A. (ed.) Robot Vision, pp. 107–116. I.F.S. Publications Ltd (1983)

  10. Castillo, P., Lozano, R., Dzul, A.: Modelling and Control of Mini-Flying Machines. Springer-Verlag in Advances in Industrial Control. ISBN: 1-85233-957-8 (2005)

  11. Zhang, Z.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. Microsoft Research, Redmond, WA 98052-6399, USA (1999)

  12. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Google Scholar 

  13. Sanahuja, G., Castillo, P., Sanchez, A.: Stabilization of n integrators in cascade with bounded input with experimental application to a VTOL laboratory system. Int. J. Robust Nonlinear Control. Published Online in Wiley InterScience. doi:10.1002/rnc.1494 (2009)

  14. Sanahuja, G.: Commande et localisation embarquée d’un drone aérien en utilisant la vision. Ph.D. thesis, Université de Technologie de Compiègne, France (2010)

  15. Herisse, B., Hamel, T., Mahony, R., Russotto, F.X.: A nonlinear terrain-following controller for a VTOL unmanned aerial vehicle using translational optical flow. In: IEEE International Conference on Robotics and Automation, Kobe, Japan (2009)

  16. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Autonomous navigation and exploration of a quadrotor helicopter in gps-denied indoor environments. In: First Symposium on Indoor Flight Issues. University of Puerto Rico in Mayagüez (2009)

  17. Mahony, R., Hamel, T.: Image based visual servo control of aerial robotic systems using linear image features. IEEE Trans. Robot. 21(2), 227–239 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanahuja, G., Castillo, P. Embedded Laser Vision System for Indoor Aerial Autonomous Navigation. J Intell Robot Syst 69, 447–457 (2013). https://doi.org/10.1007/s10846-012-9705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9705-6

Keywords

Navigation