Log in

Modeling and design of a Mott selector for a ReRAM-based non-volatile memory cell in a crossbar architecture

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, we developed a model for a nonvolatile memory cell based on the electrical model for a TiOX/HfOx ReRAM cell and the hybrid electrothermal model of a VO2 Mott selector developed recently by our team. Both models have been calibrated and validated with experimental data, and the operating characteristics of a one-selector-one-ReRAM (1S1R) memory cell has been studied. The length of the selector layer was varied as a design parameter to meet the design requirements for proper read, write, and erase operations. Simulation results suggest that the modified selector cell with 60 nm length of the VO2 layer meets all the requirements for proper operation, with a cell write voltage of 1.6 V and erase voltage of 2.5 V. The access time for this structure was studied by benchmarking with experimental data. Write access time of 10.5 ns and erase access time of 16 ns have been obtained from simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akerman, J.: Toward a universal memory. Science (2005). https://doi.org/10.1126/science.1110549

    Article  Google Scholar 

  2. Park, J.H., et al.: Enhancement of data retention and write current scaling for sub-20 nm STT-MRAM by utilizing dual interfaces for perpendicular magnetic anisotropy. In: Symposium on VLSI Technology (2012). https://doi.org/10.1109/VLSIT.2012.6242459.

  3. Zhu, J.: Magnetoresistive random access memory: the path to competitiveness and scalability. Proc. IEEE (2008). https://doi.org/10.1109/JPROC.2008.2004313

    Article  Google Scholar 

  4. Pirovano, A., et al.: Scaling analysis of phase-change memory technology. In: IEEE International Electron Devices Meeting (2003). https://doi.org/10.1109/IEDM.2003.1269376

  5. Qazi, M., et al.: A low-voltage 1 Mb FRAM in 130 μm CMOS featuring time-to-digital sensing for expanded operating margin. IEEE J. Solid State Circuits (2012). https://doi.org/10.1109/JSSC.2011.2164732

    Article  Google Scholar 

  6. Wong, H.P., et al.: Metal-oxide RRAM. Proc. IEEE (2012). https://doi.org/10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  7. Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM—part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices (2012). https://doi.org/10.1109/TED.2012.2184545

    Article  Google Scholar 

  8. Yu, S., Guan, X., Wong, P.: On the switching parameter variation of metal oxide RRAM—part II: model corroboration and device design strategy. IEEE Trans. Electron Devices (2012). https://doi.org/10.1109/TED.2012.2184544

    Article  Google Scholar 

  9. Huang, Y., et al.: A new dynamic selector based on the bipolar RRAM for the crossbar array application. IEEE Trans. Electron Devices (2012). https://doi.org/10.1109/TED.2012.2201158

    Article  Google Scholar 

  10. Linn, E., et al.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater (2010). https://doi.org/10.1038/nmat2748

    Article  Google Scholar 

  11. Wang, Ch.H., et al.: Three-dimensional 4F2 ReRAM cell with CMOS logic compatible process. In: International Electron Devices Meeting (2010). https://doi.org/10.1109/IEDM.2010.5703446

  12. Shin, J., et al.: TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3544205

    Article  Google Scholar 

  13. Huang, J., et al.: One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. In: International Electron Devices Meeting (2011). https://doi.org/10.1109/IEDM.2011.6131653.

  14. Lee, M.J., et al.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. (2007). https://doi.org/10.1002/adma.200700251

    Article  Google Scholar 

  15. Liu, X., et al.: Reduced threshold current in NbO2 selector by engineering device structure. IEEE Electron Device Lett. (2014). https://doi.org/10.1109/LED.2014.2344105

    Article  Google Scholar 

  16. Martens, K., et al.: The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch on-off resistance. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4767473

    Article  Google Scholar 

  17. Son, M., et al.: Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications. IEEE Electron Device Lett. (2012). https://doi.org/10.1109/LED.2012.2188989

    Article  Google Scholar 

  18. Jiang, Z., et al.: A compact model for metal-oxide resistive random access memory with experiment verification. IEEE Trans. Electron Devices (2016). https://doi.org/10.1109/TED.2016.2545412

    Article  Google Scholar 

  19. Jiang, Z., et al.: Verilog-A compact model for oxide-based resistive random access memory (RRAM). In: International Conference on Simulation of Semiconductor Processes and Devices (2014). https://doi.org/10.1109/SISPAD.2014.6931558

  20. Reuben, J., et al.: A Modeling methodology for resistive RAM based on stanford-PKU model with extended multilevel capability. IEEE Trans. Nanotechnol. (2019). https://doi.org/10.1109/TNANO.2019.2922838

    Article  Google Scholar 

  21. Reuben, J., et al.: Incorporating variability of resistive RAM in circuit simulations using the Stanford–PKU model. IEEE Trans. Nanotechnol. (2020). https://doi.org/10.1109/TNANO.2020.3004666

    Article  Google Scholar 

  22. Li, H., et al.: Resistive RAM-centric computing: design and modeling methodology. IEEE Trans. Circuits Syst. I Regul. Pap. (2017). https://doi.org/10.1109/TCSI.2017.2709812

    Article  Google Scholar 

  23. Belyaev, M., et al.: Switching channel development dynamics in planar structures on the basis of vanadium dioxide. Phys. Solid State (2018). https://doi.org/10.1134/S1063783418030046

    Article  Google Scholar 

  24. Pergament, A.L., et al.: Switching effect and the metal–insulator transition in electric field. J. Phys. Chem. Solids (2010). https://doi.org/10.1016/j.jpcs.2010.03.032

    Article  Google Scholar 

  25. Farjadian, M., Shalchian, M.: Hybrid electrothermal model for insulator-to- metal transition in VO2 thin films. IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.3043208

    Article  Google Scholar 

  26. Son, M., et al.: Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. (2011). https://doi.org/10.1109/LED.2011.2163697

    Article  Google Scholar 

  27. Mott, N.F., Gurney, R.W.: Electronic Processes in Ionic Crystals. Dover, New York (1948)

    MATH  Google Scholar 

  28. Karda, K., et al.: A self-consistent, semiclassical electrothermal modeling framework for mott devices. IEEE Trans. Electron Devices (2018). https://doi.org/10.1109/TED.2018.2817604

    Article  Google Scholar 

  29. Zhou, Y., Ramanathan, S.: GaN/VO2 heteroepitaxial p–n junctions: Band offset and minority carrier dynamics. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4807922

    Article  Google Scholar 

  30. Miller, C., et al.: Unusually long free carrier lifetime and metal-insulator band offset in vanadium dioxide. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.085111

    Article  Google Scholar 

  31. Kim, S., et al.: Crossbar RRAM arrays: selector device requirements during write operation. IEEE Trans. Electron Device (2014). https://doi.org/10.1109/TED.2014.2327514

    Article  Google Scholar 

  32. Pergament, A.L., et al.: Electrical switching and oscillations in vanadium dioxide. Physica B (2018). https://doi.org/10.1016/j.physb.2017.10.123

    Article  Google Scholar 

  33. Nikitin, A.A., et al.: Metal–insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0027792

    Article  Google Scholar 

  34. Kar, A., et al.: Intrinsic electronic switching time in ultrathin epitaxial vanadium dioxide thin film. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4793537

    Article  Google Scholar 

  35. Jerry, M., et al.: Dynamics of electrically driven sub-nanosecond switching in vanadium dioxide. IEEE Silicon Nanoelectron. Workshop (2016). https://doi.org/10.1109/SNW.2016.7577968

    Article  Google Scholar 

  36. Zhou, Y., et al.: Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. (2013). https://doi.org/10.1109/LED.2012.2229457

    Article  Google Scholar 

  37. Radu, I.P., et al.: Switching mechanism in two-terminal vanadium dioxide devices. Nanotechnology (2015). https://doi.org/10.1088/0957-4484/26/16/165202

    Article  Google Scholar 

  38. Pergament, A.L., et al.: Metal-insulator transition, electrical switching and oscillations. A review of state of the art and recent progress. ar**v:1601.06246 [cond-mat.mtrl-sci] (2016)

  39. Yang, Z., et al.: Dielectric and carrier transport properties of vanadium dioxide thin films across the phase transition utilizing gated capacitor devices. Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.82.205101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shalchian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farjadian, M., Shalchian, M. Modeling and design of a Mott selector for a ReRAM-based non-volatile memory cell in a crossbar architecture. J Comput Electron 21, 535–549 (2022). https://doi.org/10.1007/s10825-022-01860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-022-01860-6

Keywords

Navigation