Log in

Controlling the ambipolar current in ultrathin SOI tunnel FETs using the back-bias effect

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A two-dimensional (2-D) technology computer-aided design (TCAD)-based simulation study of the back bias in the ultrathin silicon-on-insulator (SOI) tunnel field-effect transistor (TFET) is presented. The transfer characteristics of a conventional TFET called the back-bias TFET (BB-TFET) depend on the back bias and the oxide thickness below the TFET epitaxial layer. The back bias affects the electric field at the source/channel and drain/channel junctions, hence both the ON-state current (\(I_{\mathrm{ON}}\)) and the ambipolar current (\(I_{\mathrm{AMB}}\)) reduce with a negative back-bias voltage. This reduction in \(I_{\mathrm{ON}}\) is not desirable in a TFET, hence a modified TFET structure called the back-bias underdrain TFET (BBUD-TFET) is proposed. In the BBUD-TFET, the back bias is applied on a p-Si pocket placed under the drain region, which is isolated using an ultrathin oxide. The back bias in the proposed BBUD-TFET mainly affects the electric field at the drain/channel interface, having a negligible impact on the source/channel interface. The BBUD-TFET structure is analyzed with \({\mathrm{SiO}}_2\) or \({\mathrm{HfO}}_2\) as the gate oxide. In the BBUD-TFET with \({\mathrm{HfO}}_2\) as the gate oxide, the back bias completely suppresses the ambipolar current without reducing \(I_{\mathrm{ON}}\). Furthermore, the oxide thickness and back-bias voltage are optimized for the BBUD-TFET structure. In this study, 2-D TCAD simulations are carried out to investigate and analyze the performance of the BB-TFET and BBUD-TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743 (2007). https://doi.org/10.1109/LED.2007.901273

    Article  Google Scholar 

  2. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  3. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095 (2010). https://doi.org/10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  4. Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and \(<\)60 mV/dec subthreshold slope. In: 2008 IEEE International Electron Devices Meeting (IEEE, 2008), pp. 1–3 (2008). https://doi.org/10.1109/IEDM.2008.4796839

  5. Hraziia, A., Vladimirescu, A., Amara, A., Anghel, C.: An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron. 70, 67 (2012). https://doi.org/10.1016/j.sse.2011.11.009

    Article  Google Scholar 

  6. Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlap** gate-on-drain. IEEE J. Electron Devices Soc. 2(6), 187 (2014). https://doi.org/10.1109/JEDS.2014.2327626

    Article  Google Scholar 

  7. Kondekar, P., Sharma, D., Nigam, K., Raad, B.: Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron. Lett. 52(9), 770 (2016). https://doi.org/10.1049/el.2015.4348

    Article  Google Scholar 

  8. Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. J. Semicond. Technol. Sci. 12(4), 482 (2012). https://doi.org/10.5573/JSTS.2012.12.4.482

    Article  Google Scholar 

  9. Nigam, K., Kondekar, P., Sharma, D.: Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett. 11(8), 460 (2016). https://doi.org/10.1049/mnl.2016.0178

    Article  Google Scholar 

  10. Shaker, A., El Sabbagh, M., El-Banna, M.M.: Influence of drain do** engineering on the ambipolar conduction and high-frequency performance of TFETs. IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2017.2724560

    Article  Google Scholar 

  11. Singh, S., Kondekar, P.N.: A novel electrostatically doped ferroelectric Schottky barrier tunnel FET: process resilient design. J. Comput. Electron. 16(3), 685 (2017). https://doi.org/10.1007/s10825-017-0987-6

    Article  Google Scholar 

  12. Rahimian, M., Fathipour, M.: Asymmetric junctionless nanowire TFET with built-in n+ source pocket emphasizing on energy band modification. J. Comput. Electron. 15(4), 1297 (2016). https://doi.org/10.1007/s10825-016-0895-1

    Article  Google Scholar 

  13. Loan, S.A., Alharbi, A.G., Rafat, M.: Ambipolar leakage suppression in electron-hole bilayer TFET: investigation and analysis. J. Comput. Electron. 17(3), 977 (2018). https://doi.org/10.1007/s10825-018-1184-y

    Article  Google Scholar 

  14. Bal, P., Ghosh, B., Mondal, P., Akram, M.W., Tripathi, B.M.M.: Dual material gate junctionless tunnel field effect transistor. J. Comput. Electron. 13(1), 230 (2014). https://doi.org/10.1007/s10825-013-0505-4

    Article  Google Scholar 

  15. Guo, A., Matheu, P., Liu, T.J.K.: SOI TFET ION/IOFF enhancement via back biasing. IEEE Trans. Electron Devices 58(10), 3283 (2011). https://doi.org/10.1109/TED.2011.2161480

    Article  Google Scholar 

  16. Matheu, P., Ho, B., Jacobson, Z.A., Liu, T.K.: Planar GeOI TFET performance improvement with back biasing. IEEE Trans. Electron Devices 59(6), 1629 (2012). https://doi.org/10.1109/TED.2012.2191410

    Article  Google Scholar 

  17. Sahay, S., Kumar, M.J.: Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62(11), 3882 (2015). https://doi.org/10.1109/TED.2015.2478955

    Article  Google Scholar 

  18. Wang, H., Han, G., Liu, Y., Zhang, J., Hao, Y., Jiang, X.: Theoretical investigation of backgate-biasing effects on ultrathin-body GeSn based tunneling FET. In: 2017 IEEE SOI-3D-Subthreshold Microelectronics Unified Conference, S3S 2017, pp. 1–3 (2018). https://doi.org/10.1109/S3S.2017.8309214

  19. Silvaco Inc., Atlas User’s Manual. Silvaco Inc. (2016)

  20. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa\) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725 (2007). https://doi.org/10.1109/TED.2007.899389

    Article  Google Scholar 

  21. Shih, C.H., Chien, N.D.: Bandgap-dependent onset behavior of output characteristics in line-tunneling field-effect transistors. J. Comput. Electron. 16(3), 696 (2017). https://doi.org/10.1007/s10825-017-1020-9

    Article  Google Scholar 

  22. Adell, P.C., Barnaby, H.J., Member, S., Schrimpf, R.D.: Band-to-band tunneling (BBT) induced leakage current enhancement in irradiated fully depleted SOl devices. IEEE Trans. Nucl. Sci. 54(6), 2174 (2007)

    Article  Google Scholar 

  23. Joshi, T., Singh, Y., Singh, B.: Dual-channel trench-gate tunnel FET for improved ON-current and subthreshold swing. Electron. Lett. 55(21), 1152 (2019). https://doi.org/10.1049/el.2019.2219

    Article  Google Scholar 

  24. Jastrzebski, L., Corboy, J.F., McGinn, J.T., Pagliaro, R.: Growth process of silicon over SiO2 by CVD: epitaxial lateral overgrowth technique. J. Electrochem. Soc. 130(7), 1571 (1983). https://doi.org/10.1149/1.2120037

    Article  Google Scholar 

  25. Devi, W.V., Bhowmick, B.: Optimisation of pocket doped junctionless TFET and its application in digital inverter. Micro Nano Lett. 14(1), 69 (2018). https://doi.org/10.1049/mnl.2018.5086

    Article  Google Scholar 

  26. Strangio, S., Palestri, P., Esseni, D., Selmi, L., Crupi, F., Richter, S., Zhao, Q.T., Mantl, S.: Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells. IEEE J. Electron Devices Soc. 3(3), 223 (2015). https://doi.org/10.1109/JEDS.2015.2392793

    Article  Google Scholar 

  27. Atan, N.B., Ahmad, I.B., Majlis, B.B.Y.: Effects of high-K dielectrics with metal gate for electrical characteristics of 18 nm NMOS device. In: 2014 IEEE international conference on semiconductor electronics (ICSE2014), pp. 56–59 (2014). https://doi.org/10.1109/SMELEC.2014.6920794

  28. Kumar, S., Goel, E., Singh, K., Singh, B., Kumar, M., Jit, S.: A compact 2-D analytical model for electrical characteristics of double-gate tunnel field-effect transistors with a SiO2/high-k stacked gate-oxide structure. IEEE Trans. Electron Devices 63(8), 3291 (2016). https://doi.org/10.1109/TED.2016.2572610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balraj Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, T., Singh, B. & Singh, Y. Controlling the ambipolar current in ultrathin SOI tunnel FETs using the back-bias effect. J Comput Electron 19, 658–667 (2020). https://doi.org/10.1007/s10825-020-01484-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01484-8

Keywords

Navigation