Log in

A nonlocal approach for semianalytical modeling of a heterojunction vertical surrounding-gate tunnel FET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A semianalytical model based on a nonlocal approach is proposed for an undoped tunnel field-effect transistor (TFET) with a vertical surrounding-gate structure. The heterostructure band alignment is computed by applying the affinity rule on suitable potential expressions obtained from the two-dimensional (2-D) electrostatic solution for all device regions. The fringing field, do**-induced degeneracy, ambipolarity, and dual modulation effects are included with the aim of obtaining a large domain of validity. The core model is completed with expressions for the capacitance of the terminals and validated against numerical simulations obtained using ATLAS-2D software. An investigation of the types of band alignment and the impact of do** on the device performance is also conducted. The developed models could be implemented into commercial simulators to investigate circuits based on such multigate field-effect transistors (FETs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mookerjea, S., et al: Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–3. IEEE (2009)

  2. Dewey, G., et al.: Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In: IEEE International Electron Devices Meeting (IEDM), Washington, DC, pp. 785–788. (2011)

  3. Knoch, J., Appenzeller, J.: Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Lett. 31, 305–307 (2010)

    Article  Google Scholar 

  4. Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104, 064514 (2008)

    Article  Google Scholar 

  5. Convertino, C., Zota, C.B., Schmid, H., Ionescu, A.M., Moselund, K.E.: III–V heterostructure tunnel field-effect transistor. J. Phys. Condens. Matter 30, 264005 (2018)

    Article  Google Scholar 

  6. De Michielis, L., et al.: Tunneling and occupancy probabilities: how do they affect tunnel-FET behavior? IEEE Electron Device Lett. 34, 726–728 (2013)

    Article  Google Scholar 

  7. Dong, Y., et al.: A compact model for double-gate heterojunction tunnel FETs. IEEE Trans. Electron Devices 63, 4506–4513 (2016)

    Article  Google Scholar 

  8. Jain, P., et al.: Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: thickness scaling. J. Appl. Phys. 122, 014502 (2017)

    Article  Google Scholar 

  9. Guan, Y., et al.: An analytical model of gate-all-around heterojunction tunneling FET. IEEE Trans. Electron Devices 65, 776–782 (2018)

    Article  Google Scholar 

  10. Penn State III–V Tunnel FET Model Manual. https://nanohub.org/

  11. Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. IEEE Trans. Electron Devices 62, 1399–1404 (2015)

    Article  Google Scholar 

  12. Min, J., Wu, J., Taur, Y.: Analysis of source do** effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 36, 1094–1096 (2015)

    Article  Google Scholar 

  13. Abdelmalek, N., Djeffal, F., Bentrcia, T.: Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation. J. Comput. Electron. 17, 724–735 (2018)

    Article  Google Scholar 

  14. ATLAS User Manual: Device Simulation Software (2012)

  15. Anvarifard, M.K., Orouji, A.A.: Proper electrostatic modulation of electric field in a reliable nano-SOI with a developed channel. IEEE Trans. Electron Devices 65, 1653–1657 (2018)

    Article  Google Scholar 

  16. Anvarifard, M.K., Orouji, A.A.: Stop** electric field extension in a modified nanostructure based on SOI technology-A comprehensive numerical study. Superlattices Microstruct. 111, 206–220 (2017)

    Article  Google Scholar 

  17. Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)

    Article  Google Scholar 

  18. Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)

    Article  Google Scholar 

  19. Shen, C., et al.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Trans. Electron Devices 29, 1252–1255 (2008)

    Article  Google Scholar 

  20. Jazaeri, F.: Modeling junctionless metal-oxide-semiconductor field-effect transistor. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland (2015)

  21. Lin, S.C., Kuo, J.B.: Modeling the fringing electric field effect on the threshold voltage of FD SOI nMOS devices with the LDD/sidewall oxide spacer structure. IEEE Trans. Electron Devices 50, 2559–2564 (2003)

    Article  Google Scholar 

  22. Bansal, A., Paul, B.C., Roy, K.: An analytical fringe capacitance model for interconnects using conformal map**. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25, 2765–2774 (2006)

    Article  Google Scholar 

  23. Plonsey, R., Collin, R.E.: Principles and Applications of Electromagnetic Fields. McGraw-Hill Book Company, New York (1961)

    Google Scholar 

  24. Anderson, R.L.: Experiments on Ge–GaAs heterojunction. Solid State Electron. 5, 341–344 (1962)

    Article  Google Scholar 

  25. Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)

    Article  Google Scholar 

  26. Tanaka, S.: A unified theory of direct and indirect interband tunneling under a nonuniform electric field. Solid State Electron. 37, 1543–1552 (1994)

    Article  Google Scholar 

  27. Milnes, A.G., Feuct, D.L.: Heterojunctions and Metal Semiconductor Junctions. Academic, New York (1972)

    Google Scholar 

  28. Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57, 3222–3230 (2010)

    Article  Google Scholar 

  29. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)

    Article  Google Scholar 

  30. Rajamohanan, B.: Fabrication, characterization and physics of III–V tunneling field effect transistors for low power logic and RF applications. Ph.D. dissertation, Pennsylvania State University (2010)

  31. Lundstrom, M.S., Schuelke, R.J.: Modeling semiconductor heterojunctions in equilibrium. Solid State Electron. 25, 683–691 (1982)

    Article  Google Scholar 

  32. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009)

    Article  Google Scholar 

  33. Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans. Electron Devices 59, 3217–3223 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Djeffal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmalek, N., Djeffal, F. & Bentrcia, T. A nonlocal approach for semianalytical modeling of a heterojunction vertical surrounding-gate tunnel FET. J Comput Electron 18, 104–119 (2019). https://doi.org/10.1007/s10825-019-01302-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01302-w

Keywords

Navigation