Log in

Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A continuous and accurate model based on the two-dimensional (2D) potential solution of a tunnel field-effect transistor (TFET) with undoped vertical surrounding-gate (VSG) structure is proposed. Both ambipolarity and dual modulation effects are included to obtain a more accurate analytical model, whose validity is demonstrated by comparison with two-dimensional numerical simulations using ATLAS-2D. The continuity of the proposed model enables extraction of analog/radiofrequency (RF) parameters and device figures of merit. Moreover, the effect of introducing a high-\(\kappa \) layer on the gate oxide in improving the behavior of the VSG-TFET is explored for use in high-performance analog/RF applications. The proposed continuous analytical model can be easily implemented in commercial simulators to study and investigate VSG-TFET-based nanoelectronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (ITRS). http://itrs.net (2013). Accessed 20 Dec 2013

  2. Chen, Q., Meindl, J.D.: Nanoscale metal oxide semiconductor field effect transistors: scaling limits and opportunities. Nanotechnology 15, 8549–8555 (2004)

    Google Scholar 

  3. Bentrcia, T., Djeffal, F., Benhaya, A.: Continuous analytic I–V model for GS DG MOSFETs including hot-carrier degradation effects. J. Semicond. 33, 14001–14006 (2012)

    Article  Google Scholar 

  4. Djeffal, F., Ferhati, H., Bentrcia, T.: Improved analog and RF performances of gate-all-around junctionless MOSFET with drain and source extensions. Superlattices Microstruct. 90, 132–140 (2016)

    Article  Google Scholar 

  5. ITRS Summer Meeting, Palo Alto, CA, July 11–12 (2015)

  6. Luong, G.V., et al.: Complementary strained Si GAA nanowire TFET inverter with suppressed ambipolarity. IEEE Electron Device Lett. 37, 950–953 (2016)

    Article  Google Scholar 

  7. Schulte-Braucks, C., et al.: Experimental demonstration of improved analog device performance of nanowire-TFETs. Solid State Electron. 113, 179–183 (2015)

    Article  Google Scholar 

  8. Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. In: Microelectronics Reliability, vol. 54, pp. 861–874 (2014)

  9. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)

    Article  Google Scholar 

  10. Schmitt-Landsiedel, D., Werner, C.: "Innovative devices for integrated circuits—a design perspective,"Solid-State. Electronics 53, 411–417 (2009)

    Google Scholar 

  11. Liu, L., Mohata, D., Datta, S.: Scaling length theory of double-gate interband tunnel field-effect transistors, IEEE Trans. Electron Devices 59, 902–908 (2012)

    Article  Google Scholar 

  12. Chien, N.D., Shih, C.H.: Short channel effects in tunnel field-effect transistors with different configurations of abrupt and graded Si/SiGe heterojunctions. Superlattices Microstruct. 100, 857–866 (2016)

    Article  Google Scholar 

  13. Biswal, S.M., Baral, B., De, D., Sarkar, A.: Study of effect of gate-length downscaling on the analog/RF performance and linearity investigation of InAs-based nanowire Tunnel FET. Superlattices Microstruct. 91, 319–330 (2016)

    Article  Google Scholar 

  14. Lee, J.S., et al.: Simulation study on effect of drain underlap in gate-all-around tunneling field-effect transistors. Curr. Appl. Phys. 13, 1143–1149 (2013)

    Article  Google Scholar 

  15. Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1960)

    Article  Google Scholar 

  16. Ahmed, K., Monzure Elahi, M.M., Shofiqul Islam, Md.: A compact analytical model of band-to-band tunneling in a nanoscale p-i-n diode. In: International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 18–19 May (2012)

  17. Bhushan, B., Nayak, K., Rao, V.R.: DC compact model for SOI tunnel field-effect transistors. IEEE Trans. Electron Devices 59, 2635–2642 (2012)

    Article  Google Scholar 

  18. Taur, Y., Wu, J., Min, J.: An analytic model for heterojunction tunnel FETs with exponential barrier. In: IEEE Transactions on Electron Devices, vol. 62, pp. 1399–1404 (2015)

  19. Mamidala, J.K., Vishnoi, R., Pandey, P.: Tunnel field-effect transistors (TFET): modeling and simulation. Wiley, New York (2017)

    Google Scholar 

  20. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bardon, M.G., Neves, H.P., Puers, R., Hoof, C.V.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57, 827–834 (2010)

    Article  Google Scholar 

  22. Zhang, L., Lin, X., He, J., Chan, M.: An analytical charge model for double-gate tunnel FETs. IEEE Trans Electron Devices 59, 3217–3223 (2012)

    Article  Google Scholar 

  23. Shen, C., et al.: A variational approach to the two-dimensional nonlinear poisson’s equation for the modeling of tunneling transistors. IEEE Trans. Electron Devices 29, 1252–1255 (2008)

    Article  Google Scholar 

  24. Pan, A., Chen, S., Chui, C.O.: Electrostatic modeling and insights regarding multigate lateral tunneling transistors. IEEE Trans. Electron Devices 60, 2712–2720 (2013)

    Article  Google Scholar 

  25. Patel, P.A.: Steep turn on/off green tunnel transistors, PhD dissertation. University of California, Berkeley (2010)

    Google Scholar 

  26. Zhang, L., Chan, M.: SPICE modeling of double-gate tunnel-FETs including channel transports. IEEE Trans. Electron Devices 61, 300–307 (2014)

    Article  Google Scholar 

  27. Pal, A., Dutta, A.K.: Analytical drain current modeling of double-gate tunnel field-effect transistors. IEEE Trans Electron Devices 63, 3213–3221 (2016)

    Article  Google Scholar 

  28. Min, J., Wu, J., Taur, Y.: Analysis of source do** effect in tunnel FETs with staggered bandgap. IEEE Electron Device Lett. 36, 1094–1096 (2015)

    Article  Google Scholar 

  29. Tajik Khaveh, H.R., Mohammadi, S.: Potential and drain current modeling of gate-all-around tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans. Electron Devices 63, 5021–5029 (2016)

    Article  Google Scholar 

  30. Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. In: IEEE Transactions on Electron Devices, vol. 61, pp. 1494–1500 (2014)

  31. ATLAS User Manual: Device Simulation Software (2012)

  32. Wu, C., Huang, R., Huang, Q.: An analytical surface potential model accounting for the dual-modulation effects in tunnel FETs, IEEE Trans. Electron Devices 61, 2690–2696 (2014)

    Article  Google Scholar 

  33. Abd El Hamid, H., Iñíguez, B., Guitart, J.R.: Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans Electron Devices 54, 572–579 (2007)

    Article  Google Scholar 

  34. Chambré, P.L.: On the solution of the Poisson–Boltzmann equation with application to the theory of thermal explosions. J. Chem. Phys. 20, 1795–1797 (1952)

    Article  Google Scholar 

  35. Polyanin, A.D.: Handbook of Linear Partial Differential Equation for Engineers and Scientists. Chapman & Hall/CRC, London (2002)

    MATH  Google Scholar 

  36. Asmar, N.H.: Partial Differential Equations with Fourier Series and Boundary Value Problems. Pearson Prentice Hall, Upper Saddle River (2004)

    MATH  Google Scholar 

  37. Ray, B., Mahapatra, S.: Modeling and analysis of body potential of cylindrical gate-all-around nanowire transistor. IEEE Trans. Electron Devices 55, 2409–2416 (2008)

    Article  Google Scholar 

  38. Abdi, D.B., Kumar, M.J.: 2-D threshold voltage model for the double-gate p-n-p-n TFET with localized charges. IEEE Trans. Electron Devices 63, 3663–3668 (2016)

    Article  Google Scholar 

  39. Rechem, D., Khial, A., Azizi, C., Djeffal, F.: Impacts of high-k gate dielectrics and low temperature on the performance of nanoscale CNTFETs. J. Comput. Electron. 15, 1308–1315 (2016)

    Article  Google Scholar 

  40. Cornetta, G., Santos, D.J., Vazquez, J.M.: Wireless Radio-Frequency Standards and System Design: Advanced Techniques, 1st edn. IGI Publishing Hershey, Hershey (2012)

    Book  Google Scholar 

  41. Baruah, R.K., Paily, R.P.: A dual material double-layer gate stack junctionless transistor for enhanced analog performance. In: VLSI Design and Test 17th International Symposium, VDAT 2013, Jaipur, India, July 27–30 (2013)

  42. Razavi, B.: RF Microelectronics. Prentice Hall, Englewood (1998)

    Google Scholar 

  43. Ma, W., Kaya, S.: Impact of device physics on DG and SOI MOSFET linearity. Solid State Electron. 48, 1741–1746 (2004)

    Article  Google Scholar 

  44. Bentrcia, T., Djeffal, F., Chebaki, E., Arar, D.: Impact of the drain and source extensions on nanoscale Double-Gate Junctionless MOSFET analog and RF performances. Mater. Sci. Semicond. Process. 42, 264–267 (2016)

    Article  Google Scholar 

  45. Rogers, J., Plett, C.: Radio Freq. Integr. Circuit Des. Artech House, Norwood (2003)

    Google Scholar 

  46. Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Djeffal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmalek, N., Djeffal, F. & Bentrcia, T. Continuous semianalytical modeling of vertical surrounding-gate tunnel FET: analog/RF performance evaluation. J Comput Electron 17, 724–735 (2018). https://doi.org/10.1007/s10825-018-1141-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1141-9

Keywords

Navigation