Log in

Development of a machine learning–based prediction model for clinical pregnancy of intrauterine insemination in a large Chinese population

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the effectiveness of a random forest (RF) model in predicting clinical pregnancy outcomes from intrauterine insemination (IUI) and identifying significant factors affecting IUI pregnancy in a large Chinese population.

Methods

Results

A total of 11 variables, including eight from female (age, body mass index, duration of infertility, prior miscarriage, and spontaneous abortion), hormone levels (anti-Müllerian hormone, follicle-stimulating hormone, luteinizing hormone), and three from male (smoking, semen volume, and sperm concentration), were identified as the significant variables associated with IUI clinical pregnancy in our Chinese dataset. The RF-based prediction model presents an area under the receiver operating characteristic curve (AUC) of 0.716 (95% confidence interval, 0.6914–0.7406), an accuracy rate of 0.6081, a sensitivity rate of 0.7113, and a specificity rate of 0.505. Importance analysis indicated that semen volume was the most vital variable in predicting IUI clinical pregnancy.

Conclusions

The machine learning–based IUI clinical pregnancy prediction model showed a promising predictive efficacy that could provide a potent tool to guide selecting targeted infertile couples beneficial from IUI treatment, and also identify which parameters are most relevant in IUI clinical pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Penzias A, Bendikson K, Falcone T, Hansen K, Hill M, **dal S, et al. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil Steril. 2020;113:305–22.

  2. Nandi A, Raja G, White D, Tarek ET. Intrauterine insemination + controlled ovarian hyperstimulation versus in vitro fertilisation in unexplained infertility: a systematic review and meta-analysis. Arch Gynecol Obstet. 2022;305:805–24.

    Article  PubMed  Google Scholar 

  3. Bai F, Wang DY, Fan YJ, Qiu J, Wang L, Dai Y, et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod. 2020;35:446–52.

    Article  CAS  PubMed  Google Scholar 

  4. Kozar N, Kovač V, Reljič M. Can methods of artificial intelligence aid in optimizing patient selection in patients undergoing intrauterine inseminations? J Assist Reprod Genet. 2021;38:1665–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Grau E, Oliveira M, Amengual MJ, Rodriguez-Sanchez E, Veraguas-Imbernon A, Costa L, et al. An algorithm to predict the lack of pregnancy after intrauterine insemination in infertile patients. J Clin Med. 2023;12:3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zarinara A, Zeraati H, Kamali K, Mohammad K, Shahnazari P, Akhondi MM. Models predicting success of infertility treatment: a systematic review. J Reprod Infertil. 2016;17:68–81.

    PubMed  PubMed Central  Google Scholar 

  7. Leushuis E, van der Steeg JW, Steures P, Bossuyt PMM, Eijkemans MJC, van der Veen F, et al. Prediction models in reproductive medicine: a critical appraisal. Hum Reprod Update. 2009;15:537–52.

    Article  PubMed  Google Scholar 

  8. Khodabandelu S, Basirat Z, Khaleghi S, Khafri S, Montazery Kordy H, Golsorkhtabaramiri M. Develo** machine learning-based models to predict intrauterine insemination (IUI) success by address modeling challenges in imbalanced data and providing modification solutions for them. BMC Med Inform Decis Mak. 2022;22:228.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Steures P, van der Steeg JW, Mol BW, Eijkemans MJ, van der Veen F, Habbema JD, et al. Prediction of an ongoing pregnancy after intrauterine insemination. Fertil Steril. 2004;82:45–51.

    Article  PubMed  Google Scholar 

  10. Custers IM, Steures P, van der Steeg JW, van Dessel TJHM, Bernardus RE, Bourdrez P, et al. External validation of a prediction model for an ongoing pregnancy after intrauterine insemination. Fertil Steril. 2007;88:425–31.

    Article  PubMed  Google Scholar 

  11. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:64.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blank C, Wildeboer RR, DeCroo I, Tilleman K, Weyers B, de Sutter P, et al. Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil Steril. 2019;111:318–26.

    Article  PubMed  Google Scholar 

  13. Nesbit CB, Blanchette-Porter M, Esfandiari N. Ovulation induction and intrauterine insemination in women of advanced reproductive age: a systematic review of the literature. J Assist Reprod Genet. 2022;39:1445–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuru PM, Kokanali D, Kokanali K, Tasci Y. Effect of time intervals from the end of sperm collection to intrauterine insemination on the pregnancy rates in controlled ovarian hyperstimulation-intrauterine insemination cycles. J Gynecol Obstet Hum Reprod. 2018;47:561–4.

    Article  Google Scholar 

  15. Vander BM, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.

    Article  Google Scholar 

  16. Mehrjerd A, Rezaei H, Eslami S, Ratna MB, Khadem GN. Internal validation and comparison of predictive models to determine success rate of infertility treatments: a retrospective study of 2485 cycles. Sci Rep. 2022;12:7216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ranjbari S, Khatibi T, Vosough Dizaji A, Sajadi H, Totonchi M, Ghaffari F. CNFE-SE: a novel approach combining complex network-based feature engineering and stacked ensemble to predict the success of intrauterine insemination and ranking the features. BMC Med Inform Decis Mak. 2021;21:1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Merviel P, Heraud MH, Grenier N, Lourdel E, Sanguinet P, Copin H. Predictive factors for pregnancy after intrauterine insemination (IUI): an analysis of 1038 cycles and a review of the literature. Fertil Steril. 2010;93:79–88.

    Article  PubMed  Google Scholar 

  19. Sakhel K, Abozaid T, Schwark S, Ashraf M, Abuzeid M. Semen parameters as determinants of success in 1662 cycles of intrauterine insemination after controlled ovarian hyperstimulation. Fertil Steril. 2005;84:S248–9.

    Article  Google Scholar 

  20. Kulaksiz D, Toprak T, Tokat E, Yilmaz M, Ramazanoglu MA, Garayev A, et al. Sperm concentration and semen volume increase after smoking cessation in infertile men. Int J Impot Res. 2022;34:614–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wessel JA, Danhof NA, van Eekelen R, Diamond MP, Legro RS, Peeraer K, et al. Ovarian stimulation strategies for intrauterine insemination in couples with unexplained infertility: a systematic review and individual participant data meta-analysis. Hum Reprod Update. 2022;28:733–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue X, Shi W, Zhou H, Tian L, Zhao Z, Zhou D, et al. Cumulative live birth rates according to maternal body mass index after first ovarian stimulation for in vitro fertilization: a single center analysis of 14,782 Patients. Front Endocrinol (Lausanne). 2020;11:149.

    Article  PubMed  Google Scholar 

  23. Qu P, Yan M, Zhao D, Wang D, Dang S, Shi W, et al. Association between pre-pregnancy body mass index and miscarriage in an assisted reproductive technology population: a 10-year cohort study. Front Endocrinol (Lausanne). 2021;12:646162.

    Article  PubMed  Google Scholar 

  24. Yavuz A, Demirci O, Sozen H, Uludogan M. Predictive factors influencing pregnancy rates after intrauterine insemination. Iran J Reprod Med. 2013;11:227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gindoff PR, Jewelewicz R. Reproductive potential in the older woman. Fertil Steril. 1986;46:989–1001.

    Article  CAS  PubMed  Google Scholar 

  26. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7:1342–6.

    Article  CAS  PubMed  Google Scholar 

  27. Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2021;70:2–9.

    Article  PubMed  Google Scholar 

  28. Thijssen A, Creemers A, Van der Elst W, Creemers E, Vandormael E, Dhont N, et al. Predictive value of different covariates influencing pregnancy rate following intrauterine insemination with homologous semen: a prospective cohort study. Reprod Biomed Online. 2017;34:463–72.

    Article  PubMed  Google Scholar 

  29. Soria M, Pradillo G, García J, Ramón P, Castillo A, Jordana C, et al. Pregnancy predictors after intrauterine insemination: analysis of 3012 cycles in 1201 couples. J Reprod Infertil. 2012;13:158–66.

    PubMed  PubMed Central  Google Scholar 

  30. Jain A, Polotsky AJ, Rochester D, Berga SL, Loucks T, Zeitlian G, et al. Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women. J Clin Endocrinol Metab. 2007;92:2468–73.

    Article  CAS  PubMed  Google Scholar 

  31. Regan L, Owen EJ, Jacobs HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336:1141–4.

    Article  CAS  PubMed  Google Scholar 

  32. Iliodromiti S, Kelsey TW, Wu O, Anderson RA, Nelson SM. The predictive accuracy of anti-Müllerian hormone for live birth after assisted conception: a systematic review and meta-analysis of the literature. Hum Reprod Update. 2014;20:560–70.

    Article  CAS  PubMed  Google Scholar 

  33. Hansen KR, He ALW, Styer AK, Wild RA, Butts S, Engmann L, et al. Predictors of pregnancy and live-birth in couples with unexplained infertility after ovarian stimulation-intrauterine insemination. Fertil Steril. 2016;105:1575-1583.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vitale SG, Angioni S, Parry JP, Di Spiezio Sardo A, Haimovich S, Carugno J, et al. Efficacy of Hysteroscopy in Improving Fertility Outcomes in Women Undergoing Assisted Reproductive Technique: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gynecol Obstet Invest. 2023;88:336–48.

    Article  PubMed  Google Scholar 

  35. Brodin T, Bergh T, Berglund L, Hadziosmanovic N, Holte J. High basal LH levels in combination with low basal FSH levels are associated with high success rates at assisted reproduction. Hum Reprod. 2009;24:2755–9.

    Article  CAS  PubMed  Google Scholar 

  36. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284:603–19.

    Article  CAS  PubMed  Google Scholar 

  37. Rahimian F, Salimi-Khorshidi G, Payberah AH, Tran J, Ayala Solares R, Raimondi F, et al. Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records .Sheikh A, editor. PLoS Med. 2018;15:e1002695.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goldman RH, Batsis M, Petrozza JC, Souter I. Patient-specific predictions of outcome after gonadotropin ovulation induction/intrauterine insemination. Fertil Steril. 2014;101(1649–55):e1-2.

    Google Scholar 

  39. Ainsworth AJ, Barnard EP, Baumgarten SC, Weaver AL, Khan Z. Intrauterine insemination cycles: prediction of success and thresholds for poor prognosis and futile care. J Assist Reprod Genet. 2020;37:2435–42.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–92.

    Article  CAS  PubMed  Google Scholar 

  41. Deo RC. Machine learning in medicine: will this time be different? Circulation. 2020;142:1521–3.

    Article  PubMed  Google Scholar 

  42. Liu L, Jiao Y, Li X, Ouyang Y, Shi D. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput Methods Programs Biomed. 2020;196:105624.

    Article  PubMed  Google Scholar 

  43. Liu X, Chen Z, Ji Y. Construction of the machine learning-based live birth prediction models for the first in vitro fertilization pregnant women. BMC Pregnancy Childbirth. 2023;23:476.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RH conceived and designed the research. WJZ provided statistical guidance. JLW analyzed the results and drafted the manuscript. TTL, LNC, and JLW performed the research and acquired the data. LNX, XYL, AHL, WJZ, RH, and JLW interpreted the data and modified the manuscript. All authors revised and approved the final version of the manuscript and agree to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Wangjian Zhang or Rui Huang.

Ethics declarations

Ethics approval

This study has been approved by the Ethics Committee of the Sixth Affiliated Hospital of Sun Yat-Sen University (2019ZSLYEC-011S).

Consent to participate

All patients provided written informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Supplementary file2 (PDF 42875 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, T., Xu, L. et al. Development of a machine learning–based prediction model for clinical pregnancy of intrauterine insemination in a large Chinese population. J Assist Reprod Genet (2024). https://doi.org/10.1007/s10815-024-03153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10815-024-03153-2

Keywords

Navigation