Log in

Energy Levels, Wavelengths, and Transition Probabilities of Intercombination Lines in the Spectra of Gе-Like I, Cs, and La Ions

  • Published:
Journal of Applied Spectroscopy Aims and scope

Energy levels, wavelengths, transition probabilities, and line strengths are calculated for the allowed electric dipole 4s24p2–4s4p3 and 4s24p2–4s24p4d transitions of Ge-like ions with Z = 53, 55 and 57, I XXII, Cs XXIV, and La XXVI. By employing active-space techniques to expand the confi guration list, we also include the Breit interaction and quantum electrodynamical (QED) effects to correct the atomic state wave functions and the corresponding energies. Both valence correlation and core polarization effects are included. The results are compared with the available experimental and other theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Vilkas and Y. Ishikawa, Phys. Rev. A, 72, 032512 (2005).

    Article  ADS  Google Scholar 

  2. P. Palmeri, P. Quinet, É. Biémont, and E. Träbert, At. Data Nucl. Data Tables, 93, 355–374 (2007).

    Article  ADS  Google Scholar 

  3. G.-J. Bian, F. He, G. Jiang, Q.-P. Fan, and F. Hu, Phys. Scr., 90, 015403 (2015).

    Article  ADS  Google Scholar 

  4. J. A. S antana, Y. Ishikawa, and E. Träbert, At. Data Nucl. Data Tables, 100, 183–271 (2014).

    Article  ADS  Google Scholar 

  5. P. Bogdano vich, R. Karpuškienė, and R. Kisielius, Lith. J. Phys., 55, 162–173 (2015).

    Google Scholar 

  6. J. Clementson, P. Beiersdorfer, T. Brage, and M. F. Gu, At. Dat a Nucl. Data Tables, 100, 577–649 (2014).

    Article  ADS  Google Scholar 

  7. O. Nagy and F. El-Sayed, At. D ata Nucl. Data Tables, 98, 373–390 (2012).

    Article  ADS  Google Scholar 

  8. J.-G. Li, E. Träbert, and C.-Z. Dong, Phys. Scr. , 83, 015301 (2011).

    Article  ADS  Google Scholar 

  9. Y. Ishikawa and M. J. V ilkas, Int. J. Q uantum Chem., 90, 410–418 (2002).

    Article  Google Scholar 

  10. E. Biémont, A. El Himdy, and H. P. Garnir, J. Quant. Spectr osc. Radiat. Transfer, 43, 437–443 (1990).

    Article  ADS  Google Scholar 

  11. Z.-B. Chen and K. Wang, At. Data Nucl. Data Tables, 114, 61–261 (2017).

    Article  ADS  Google Scholar 

  12. K. B. Fournier, At. Data Nucl. Data Tables, 68, 1–48 (1998).

    Article  ADS  Google Scholar 

  13. S. B. Utter, P. Beiersdorfer, and E. Träbert, Can. J. Phys., 80, 1503–1515 (2002).

    Article  ADS  Google Scholar 

  14. Yu. Ralchenko, J. Reader, J. M. Pomeroy, J. N. Tan, and J. D. Gillaspy, J. Phys. B: At. Mol. Opt. Phys., 40, 3861–3875 (2007).

    Article  ADS  Google Scholar 

  15. U. Litzén and X. Zeng, J. Phys. B: At. Mol. Opt. Phys., 24, L45 (1991).

    Article  ADS  Google Scholar 

  16. A. G. Trigueiros, C. J. B. Pagan, S.-G. Pettersson, and J. G. Reyna Almandos, Phys. Rev. A, 40, 3911–3914 (1989).

    Article  ADS  Google Scholar 

  17. I. N. Draganić, Yu. Ralchenko, J. Reader, J. D. Gil laspy, J. N. Tan, J. M. Pomeroy, S. M. Brewer, and D. Osin, J. Phys. B: At. Mo l. Opt. Phys., 44, 025001 (2011).

    Article  ADS  Google Scholar 

  18. C. Biedermann, R. Radtke, G. Fußann, J. L. Schwob, and P. Mandelbaum, Nucl. Instrum. Methods Phys. Res. B, 235, 126–130 (2005).

    Article  ADS  Google Scholar 

  19. C. Suzuki, T. Kato, H. A. Sakaue, D. Kato, K. Sato, N. Tamura, S. Sudo,N. Yamamoto, H. Tanuma, H. Ohashi, R. D’Arcy, and G. O’Sullivan, J. Phys. B: At. Mol. Opt. Phys., 43, 074027 (2010).

    Article  ADS  Google Scholar 

  20. T. Shirai, J. Sugar, A. Musgrove, and W. L. Wiese, Spectral Data for Highly Ionized Atoms: Ti, V, Cr, Mn , Fe, Co, Ni,Cu, Kr and Mo, J. Phys. Chem. Ref. Data, AIP Press, Melville, New York (2000); http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  21. J. P. Desclaux, Comput. Phys. Commun., 9, 31–45 (1975).

    Article  ADS  Google Scholar 

  22. J. P. Desclaux and P. Indelicato, MCDFGME, a MultiConfi guration Dirac Fock and General Matrix Elements Program, release 2005; http://dirac.spectro.jussieu.fr/mcdf.

  23. E. Träbert. Phys. Scr., T144, 014004 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Hao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 2, p. 324, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L.H., Kang, X.P. & Liu, J.J. Energy Levels, Wavelengths, and Transition Probabilities of Intercombination Lines in the Spectra of Gе-Like I, Cs, and La Ions. J Appl Spectrosc 86, 333–344 (2019). https://doi.org/10.1007/s10812-019-00823-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00823-3

Keywords

Navigation