Log in

Identification and expression profiling of HSP20 genes in Neoporphyra haitanensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Small heat-shock proteins (sHSPs/HSP20s) are closely related to algae and plant thermotolerance, but studies on HSP20 family in Neoporphyra haitanensis are scarce. In this study, a total of eight HSP20 members were identified from the genome of N. haitanensis. It was predicted that most of them encode acidic hydrophilic proteins, locating in various organelles as chloroplasts and endoplasmic reticulum. Phylogenetically, the HSP20 genes of N. haitanensis were closely related to that of other species of Porphyra sensu lato, which evolved independently from that of land plants. In addition, their promoter regions contain a large number of cis-acting elements related to stress response. Based on the expression analysis of six HSP20 genes, it showed that the expression patterns of these genes were different among three conditions of dehydration, heat stress and co-stresses of heat and dehydration, with some genes being very sensitive to heat stress. These results initially indicated that HSP20 genes in N. haitanensis could specifically response to heat stress under gene expression level, suggesting their involvement in the process of thermotolerance of N. haitanensis, which is valuable for further studies on the molecular function of HSP20s in N. haitanensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  Google Scholar 

  • Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau M-M, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941

    Article  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  CAS  Google Scholar 

  • Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collén J, Dittami SM, Gachon CMM, Green BR, Karpowicz SJ, Kim JW, Kudahl UJ, Lin S, Michel G, Mittag M, Olson BJSC, Pangilinan JL, Peng Y, Qiu H, Shu S, Singer JT, Smith AG, Sprecher BN, Wagner V, Wang W, Wang Z-Y, Yan J, Yarish C, Zäuner-Riek S, Zhuang Y, Zou Y, Lindquist EA, Grimwood J, Barry KW, Rokhsar DS, Schmutz J, Stiller JW, Grossman AR, Prochnik SE (2017) Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc Natl Acad Sci USA 114:E6361–E6370

    Article  CAS  Google Scholar 

  • Cao M, Xu KP, Yu XZ, Bi GQ, Liu Y, Kong FN, Sun PP, Tang XH, Du GY, Ge Y, Wang DM, Mao YX (2020) A chromosome-level genome assembly of Pyropia haitanensis (Bangiales, Rhodophyta). Mol Ecol Resour 20:216–227

    Article  CAS  Google Scholar 

  • Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain.” J Mol Evol 40:238–248

    Article  CAS  Google Scholar 

  • Chang J, Shi JZ, Lin JZ, Ji DH, Xu Y, Chen CS, Wang WL, **e CT (2021) Molecular mechanism underlying Pyropia haitanensis PhHSP22-mediated increase in the high-temperature tolerance of Chlamydomonas reinhardtii. J Appl Phycol 33:1137–1148

    Article  CAS  Google Scholar 

  • Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, **a R (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  Google Scholar 

  • Chen YT, Xu Y, Ji DH, Chen CS, **e CT (2015) Cloning and expression analysis of two small heat shock protein (sHsp) genes from Pyropia haitanensis. J Fish China 39:182–192 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Silva CD, Delage L, Denoeud F, Ph, (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci USA 110:5247–5252

    Article  Google Scholar 

  • Ding HC, Fei QJ, Zhang P, Wang T, Yan XH (2020) Isolation and characterization of a heat-resistant strain with high yield of Pyropia haitanensis induced by Ultraviolet ray. Aquaculture 521:735050

    Article  CAS  Google Scholar 

  • He YJ, Fan M, Sun YY, Li LL (2018) Genome-wide analysis of watermelon HSP20s and their expression profiles and subcellular locations under stresses. Int J Mol Sci 20:12

    Article  Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G, Kovács E, Nádasdi L, Benkö S, Joó F, Vígh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene.” Proc Natl Acad Sci USA 95:3513–3518

    Article  Google Scholar 

  • Hsieh MH, Chen JT, **n TL, Chen YM, Lin CY (1992) A class of soybean low molecular weight heat shock proteins immunological study and quantitation. Plant Physiol 99:1279–1284

    Article  CAS  Google Scholar 

  • Hu XL, Li YH, Li CH, Yang HR, Wang W, Lu MH (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29:455–464

    Article  CAS  Google Scholar 

  • Huang LB, Peng LN, Yan XH (2021) Multi-omics responses of red algae Pyropia haitanensis to intertidal desiccation during low tides. Algal Res 58:102376

    Article  Google Scholar 

  • ** Y, Yang S, Im S, Jeong WJ, Choi DW (2017) Small heat shock protein, Ptshsp19.3 from marine red algae, Pyropia tenera (Bangiales, Rhodophyta) enhances abiotic stress tolerance in Chlamydomonas. J Plant Biotechnol 44:287–295

    Article  Google Scholar 

  • Lee JM, Yang EC, Graf L, Yang JH, Qiu H, Zel ZU, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS (2018) Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta. Mol Biol Evol 35:1869–1886

    Article  CAS  Google Scholar 

  • Li B, Chen CS, Xu Y, Ji D, ** genes as internal controls for studying the gene expression in Pyropia haitanensis(Bangiales, Rhodophyta) by quantitative real-time PCR. Acta Oceanol Sin 33:152–159

    Article  Google Scholar 

  • Li J, Liu XH (2019) Genome-wide identification and expression profile analysis of the HSP20 gene family in Barley (Hordeum vulgare L.). Peer J 7:e6832

    Article  Google Scholar 

  • Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the HSP20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14:577

    Article  Google Scholar 

  • Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113

    Article  CAS  Google Scholar 

  • Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  CAS  Google Scholar 

  • Song SS, Gao DH, Yan XH (2020) Transcriptomic exploration of genes related to the formation of archeospores in Pyropia yezoensis (Rhodophyta). J Appl Phycol 32:3295–3304

    Article  CAS  Google Scholar 

  • Tsvetkova NM, Horváth I, Török Z, Wolkers WF, Balogi Z, Shigapova N, Crowe LM, Tablin F, Vierling E, Crowe JH, Vígh L (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci USA 99:13504–13509

    Article  CAS  Google Scholar 

  • Uji T, Gondaira Y, Fukuda S, Mizuta H, Saga N (2019) Characterization and expression profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell Stress Chaperones 1:223–233

    Article  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Wang DM, Yu XZ, Xu KP, Bi GQ, Cao M, Zelzion E, Fu CX, Sun PP, Liu Y, Kong FN, Du GY, Tang XH, Yang RJ, Wang JH, Tang L, Wang L, Zhao YJ, Ge Y, Zhuang YY, Mo ZL, Chen Y, Gao T, Guan XW, Chen R, Qu WH, Sun B, Bhattacharya D, Mao YX (2020) Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat Commun 11:4028

    Article  CAS  Google Scholar 

  • Yan XH, Liang ZQ, Song WL, Huang J, Ma P, Aruga Y (2005) Induction and isolation of artificial pigmentation mutants in Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Fish China 29:166–172 (in Chinese with English abstract)

    Google Scholar 

  • Yan XH, Lv F, Liu CJ, Zheng YF (2010) Selection and characterization of a high-temperature tolerant strain of Porphyra haitanensis Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 22:511–516

    Article  Google Scholar 

  • Yang LE, Deng YY, Xu GP, Russel S, Lu QQ, Brodie J (2020) Redefining Pyropia (Bangiales, Rhodophyta): four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J Phycol 56:862–879

    Article  CAS  Google Scholar 

  • Yu JH, Cheng Y, Feng K, Ruan MY, Ye QJ, Wang RQ, Li ZM, Zhou GZ, Yao ZP, Yang YJ, Wan HJ (2016) Genome-wide identification and expression profiling of tomato HSP20 gene family in response to biotic and abiotic stresses. Front Plant Sci 7:1215

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thanks Dr. Dong-Mei Wang (Ocean University of China) for the help on genomic data analysis.

Funding

This work was supported by the National Key Research and Development Program of China [2018YFD0900606]; the Startup Foundation for Young Teachers of Shanghai Ocean University; and the Open Program of Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province [2020fjscq01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ng-Hong Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, LN., Huang, LB., Gui, TY. et al. Identification and expression profiling of HSP20 genes in Neoporphyra haitanensis. J Appl Phycol 34, 1089–1097 (2022). https://doi.org/10.1007/s10811-022-02686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02686-2

Keywords

Navigation