Log in

Establishment of high-cell-density heterotrophic cultivation of Poterioochromonas malhamensis contributes to achieving biological control of Microcystis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The chrysophyte Poterioochromonas malhamensis has potential for controlling algal blooms through rapid grazing of toxic Microcystis cells and efficient degradation of microcystin. However, this method has not been used in practice because a high-cell-density method for cultivating P. malhamensis has not yet been established and the actual effect of the chrysophyte in controlling Microcystis blooms in the field is still unknown. To achieve the application of this method, high-cell-density heterotrophic cultivation of P. malhamensis was established through optimizing the carbon/glucose concentration, C:N ratio, temperature, pH, and dissolved oxygen concentration. Under optimized conditions, the cell concentration of P. malhamensis reached more than 3 × 108 cells mL−1, which exceeds that reported in other studies by more than an order of magnitude. The ability of the chemoheterotrophic P. malhamensis to graze unicellular Microcystis cells was comparable to that of autotrophic and phagotrophic P. malhamensis. A controlled field experiment showed that chemoheterotrophic P. malhamensis could live in the aquatic environment with a Microcystis bloom and decrease the Microcystis biomass on the surface of the water by promoting the sedimentation of colonial Microcystis cells. This study offers an opportunity to drive the development of methods to control Microcystis blooms using predatory P. malhamensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source at this point is running out and the glucose concentration is too low to be detected. Error bars represent the standard deviation (n = 3)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahn CY, Park MH, Joung SH, Kim HS, Jang KY, Oh HM (2003) Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environ Sci Technol 37:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Graf L, Malakhov Y, Yoon HS (2017) Rediscovery of the Ochromonas type species Ochromonas triangulata (Chrysophyceae) from its type locality (Lake Veysove, Donetsk region, Ukraine). Phycologia 56:591–604

    Article  CAS  Google Scholar 

  • Blom JF, Pernthaler J (2010) Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates. FEMS Microbiol Ecol 71:281–290

    Article  CAS  PubMed  Google Scholar 

  • Boenigk J, Stadler P (2004) Potential toxicity of chrysophytes affiliated with Poterioochromonas and related ‘Spumella-like’flagellates. J Plankton Res 26:1507–1514

    Article  Google Scholar 

  • Boon PI, Bunn SE, Green JD, Shiel RJ (1994) Consumption of cyanobacteria by freshwater zooplankton: implications for the success of ‘top-down’ control of cyanobacterial blooms in Australia. Mar Freshwater Res 45:875–887

    Article  Google Scholar 

  • Boxhorn JE, Holen DA, Boraas ME (1998) Toxicity of the chrysophyte flagellate Poterioochromonas malhamensis to the rotifer Brachionus angularis. Hydrobiologia 387:283–287

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    Article  CAS  Google Scholar 

  • Chen JL, Proteau PJ, Roberts MA, Gerwick WH, Slate DL, Lee RH (1994) Structure of malhamensilipin A, an inhibitor of protein tyrosine kinase, from the cultured chrysophyte Poterioochromonas malhamensis. J Nat Prod 57:524–527

    Article  CAS  PubMed  Google Scholar 

  • Corno G, Jurgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destain J, Haubruge É, Thonart P, Portetelle D, Francis F, Bauwens J, Tarayre C, Brasseur C, Mattéotti C, Vandenbol M (2014) Isolation of an amylolytic chrysophyte, Poterioochromonas sp., from the digestive tract of the termite Reticulitermes santonensis. Biotechnol Agron Soc Environ 18:19–31

    Google Scholar 

  • Fenchel T (2014) Protozoa and oxygen. Acta Protozool 53:3–12

    CAS  Google Scholar 

  • Ger KA, Naus-Wiezer S, De Meester L, Lürling M (2019) Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnol Oceanogr 64:1214–1227

    Article  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • He X, Wert EC (2016) Colonial cell disaggregation and intracellular microcystin release following chlorination of naturally occurring Microcystis. Water Res 101:10–16

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ma M, Hu Q, Gong Y (2021) Assessment of NH4HCO3 for the control of the predator flagellate Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana. Algal Res 60:102481

  • Holen DA, Boraas ME (1995) Mixotrophy in chrysophytes. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 119–140

    Chapter  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Humphries S, Widjaja F (1979) A simple method for separating cells of Microcystis aeruginosa for counting. Br Phycol J 14:313–316

    Article  Google Scholar 

  • ** H, Zhang H, Zhou Z, Li K, Hou G, Xu Q, Chuai W, Zhang C, Han D, Hu Q (2020) Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol Bioeng 117:96–108

    Article  CAS  PubMed  Google Scholar 

  • Kauss H, Kriebitzsch C (1969) Demonstration and partial purification of A β-(1→3)-glucan phosphorylase. Biochem Biophys Res Comm 35:926–930

    Article  CAS  PubMed  Google Scholar 

  • Kim BR, Han MS (2007) Growth and grazing of the mixotrophic flagellate Poterioochromonas malhamensis on the cyanobacterium Microcystis aeruginosa. Kor J Nat Conserv 5:183–194

    Article  Google Scholar 

  • Leakey R, Burkill P, Sleigh M (1994) A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J Plankton Res 16:375–389

    Article  Google Scholar 

  • Lewitus AJ, Caron DA (1991) Physiological responses of phytoflagellates to dissolved organic substrate additions. 1. Dominant role of heterotrophic nutrition in Poterioochromonas malhamensis (Chrysophyceae). Plant Cell Physiol 32:671–680

    Article  CAS  Google Scholar 

  • Li M, **ao M, Zhang P, Hamilton DP (2018) Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res 141:340–348

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Raya A, Ju LK (2014) Microalga Ochromonas danica fermentation and lipid production from waste organics such as ketchup. Process Biochem 49:1383–1392

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Chen F (2014) Heterotrophic production of algal oils. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 111–142

    Chapter  Google Scholar 

  • Liu M, Shi X, Chen C, Yu L, Sun C (2017) Responses of Microcystis colonies of different sizes to hydrogen peroxide stress. Toxins 9:306

    Article  PubMed Central  Google Scholar 

  • Lyu K, Gu L, Wang H, Zhu X, Zhang L, Sun Y, Huang Y, Yang Z (2019) Transcriptomic analysis dissects the mechanistic insight into the Daphnia clonal variation in tolerance to toxic Microcystis. Limnol Oceanogr 64:272–283

    Article  CAS  Google Scholar 

  • Ma M, Gong Y, Hu Q (2018) Identification and feeding characteristics of the mixotrophic flagellate Poterioochromonas malhamensis, a microalgal predator isolated from outdoor massive Chlorella culture. Algal Res 29:142–153

    Article  Google Scholar 

  • Ma M, Yuan D, He Y, Park M, Gong Y, Hu Q (2017) Effective control of Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana GT-1 by maintaining CO2- mediated low culture pH. Algal Res 26:436–444

    Article  Google Scholar 

  • Nguyen TDP, Tran TNT, Le TVA, Phan TXN, Show PL, Chia SR (2019) Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: influence of culture conditions on microalgae growth and nutrient removal. J Biosci Bioeng 127:492–498

    Article  CAS  PubMed  Google Scholar 

  • Ou D, Song L, Gan N, Chen W (2005) Effects of microcystins on and toxin degradation by Poterioochromonas sp. Environ Toxicol 20:373–380

    Article  CAS  PubMed  Google Scholar 

  • Rigosi A, Carey CC, Ibelings BW, Brookes JD (2014) The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol Oceanogr 59:99–114

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61

    Article  Google Scholar 

  • Roderer G (1986) Poterioochromonas malhamensis-a unicellular alga as test system in ccotoxicology, toxicology, and pharmacology. Environ Toxicol 1:123–138

    Google Scholar 

  • Rottberger J, Gruber A, Boenigk J, Kroth PG (2013) Influence of nutrients and light on autotrophic, mixotrophic and heterotrophic freshwater chrysophytes. Aquat Microb Ecol 71:179–191

    Article  Google Scholar 

  • Sanders RW, Porter KG, Caron DA (1990) Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microb Ecol 19:97–109

    Article  CAS  PubMed  Google Scholar 

  • Sarnelle O (1992) Nutrient enrichment and grazer effects on phytoplankton in lakes. Ecology 73:551–560

    Article  Google Scholar 

  • Shams S, Cerasino L, Salmaso N, Dietrich DR (2014) Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: implications for water management. Aquat Toxicol 148:9–15

    Article  CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–308

    Article  CAS  PubMed  Google Scholar 

  • Tan CK, Johns MR (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  CAS  Google Scholar 

  • Tan X, Duan Z, Duan P, Parajuli K, Newman J, Shu X, Zhang D, Gao L, Li M (2020) Flocculation of Microcystis unicells induced by pH regulation: mechanism and potential application. Chemosphere 263:127708

    Article  PubMed  Google Scholar 

  • Toda N, Murakami H, Kanbara A, Kuroda A, Hirota R (2021) Phosphite reduces the predation impact of Poterioochromonas malhamensis on cyanobacterial culture. Plants 10:1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touloupakis E, Cicchi B, Benavides AM, Torzillo G (2016) Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 100:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W (2016) The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae 55:97–111

    Article  PubMed  Google Scholar 

  • Wang H, Tao Y, Li Y, Wu S, Li D, Liu X, Han Y, Manickam S, Show PL (2021a) Application of ultrasonication at different microbial growth stages during apple juice fermentation by Lactobacillus plantarum: investigation on the metabolic response. Ultrason Sonochem 73:105486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang Y, Shen H, **e P, Yu J (2015) Changes in the bacterial community and extracellular compounds associated with the disaggregation of Microcystis colonies. Biochem Syst Ecol 61:62–66

    Article  CAS  Google Scholar 

  • Wang X, Li H, Zhan X, Ma M, Yuan D, Hu Q, Gong Y (2021b) Development and application of quantitative real-time PCR based on the mitochondrial cytochrome oxidase subunit I gene for early detection of the grazer Poterioochromonas malhamensis contaminating Chlorella culture. Algal Res 53:102133

    Article  Google Scholar 

  • Wang Y, Gong Y, Dai L, Sommerfeld M, Zhang C, Hu Q (2018) Identification of harmful protozoa in outdoor cultivation of Chlorella and the use of ultrasonication to control contamination. Algal Res 31:298–310

    Article  Google Scholar 

  • Wen Z, Chen F (2000) Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: effects of silicate and glucose. J Ind Microbiol Biotechnol 25:218–224

    Article  CAS  Google Scholar 

  • **ao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93:1399–1420

    Article  PubMed  Google Scholar 

  • Zeković DB, Kwiatkowski S, Vrvić MM, Jakovljević D, Moran CA (2005) Natural and modified (1→ 3)-β-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25:205–230

  • Zhang L, Gu L, Hou X, Kong Q, Chen K, Zhu X, Huang Y, Chen Y, Yang Z (2018) Chlorophytes prolong mixotrophic Ochromonas eliminating Microcystis: temperature-dependent effect. Sci Total Environ 639:705–713

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang Z, Wang N, Gu L, Sun Y, Huang Y, Chen Y, Yang Z (2020) Mixotrophic Ochromonas addition improves the harmful Microcystis-dominated phytoplankton community in in situ microcosms. Environ Sci Technol 54:4609–4620

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu HY, Men YJ, Yang J, Christoffersen K (2009) Feeding characteristics of a golden alga (Poterioochromonas sp.) grazing on toxic cyanobacterium Microcystis aeruginosa. Water Res 43:2953–2960

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu HY, Hong Y, Yang J (2008) Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR. FEMS Microbiol Lett 288:241–246

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Hu HY, Warming TP, Christoffersen KS (2011) Life history response of Daphnia magna to a mixotrophic golden alga, Poterioochromonas sp., at different food levels. Bull Environ Contam Toxicol 87:117–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Watanabe MM (2001) Grazing and growth of the mixotrophic chrysomonad Poterioochromonas malhamensis feeding on algae. J Phycol 37:738–743

    Article  Google Scholar 

  • Zhang X, Watanabe MM (1996) Light and electron microscopy of grazing by Poterioochromonas malhamensis (Chrysophyceae) on a range of phytoplankton taxa. J Phycol 32:37–46

    Article  CAS  Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Dr. Binliang Wang and Qingyang Song for hel** with the outdoor control experiment. The authors also thank the National Aquatic Biological Resource Center (NABRC) at the Institute of Hydrobiology, Chinese Academy of Sciences, for providing support.

Funding

This work was funded by the National Key Research and Development Program of China (No. 2019YFD0900302), the National Natural Science Foundation of China (No. 31772419, No. 31872201, and No. 32002413), the National Key Research and Development Project (No. 2017YFE0125700), the China Postdoctoral Science Foundation (No. 2019M662749), and the Agricultural Science and Technology Innovation Action Project of Hubei Province of China (2018).

Author information

Authors and Affiliations

Authors

Contributions

Mingyang Ma and Fuchen Wang performed the experiments, analyzed the data, and wrote the paper. Chaojun Wei and Hongxia Wang participated in the outdoor experiment. Jian** Chen and Hu ** participated in the fermentation of P. malhamensis in the 7.5-L bioreactors. Lirong Song provided algal cultures and offered crucial suggestions on the analysis of the results. Qiang Hu and Yingchun Gong contributed to the design of the experiments, the drafting of the paper, and revising it critically. All authors gave approval for publication.

Corresponding author

Correspondence to Yingchun Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 748 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Wang, F., Wei, C. et al. Establishment of high-cell-density heterotrophic cultivation of Poterioochromonas malhamensis contributes to achieving biological control of Microcystis. J Appl Phycol 34, 423–434 (2022). https://doi.org/10.1007/s10811-021-02659-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02659-x

Keywords

Navigation