Log in

Ulvan extracted from green seaweeds as new natural additives in diets for laying hens

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Ulvan extracted from the green seaweed Ulva was added in laying hen diets. The effect of ulvan on laying performance, egg quality, immunity function, and antioxidant capacity was evaluated using Hy-Line Brown hens. Six groups of birds (n = 864, 61 weeks old) were fed on the basal diet containing ulvan at 0, 0.05, 0.1, 0.5, 0.8, and 1% for 8 weeks. The results were compared with the control group. Ulvan at concentrations of 0.1 to 1% can significantly improve the egg production (P < 0.05), and higher concentrations (1%) increased the egg weight and decreased feed conversion ratio of hens (P < 0.05). Ulvan at higher concentrations (0.8%, 1%) also helped to improve the eggshell strength (P < 0.05). Ulvan at concentrations of 0.5 to 1% leads to a yolk color to red tendency, and ulvan at concentrations 0.05 to 1% can significantly decrease cholesterol levels of yolk (P < 0.05). Treatments with high levels (1%) of ulvan showed a positive effect on interleukin-6 as well as 0.8% of ulvan on interferon-γ (P < 0.05). There are significant interactions (P < 0.05) on the time × ulvan level on total antioxidative capacity, malondialdehyde, and superoxide dismutase levels of blood serum. These findings thus suggested that ulvan extract can be used as additives in diets for laying hens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Briseno JA, Cruz-Suarez LE, Jean-François S, Ricque-Marie D, Zapata-Benavides P, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM (2015) Sulphated polysaccharides from Ulva clathrata and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion, in NDV infection. Mar Drugs 13:697–712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araújo IWF, Rodrigues JAG, Quinderé ALG (2016) Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int J Biol Macromol 92:820–830

    Article  PubMed  CAS  Google Scholar 

  • Bahar B, O’Doherty JV, Hayes M, Sweeney T (2012) Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo. J AnimSci 90:46–48

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  • Berri M, Slugocki C, Olivier M, Helloin E, JacquesI SH, Demais H, Goff ML, Collen PN (2016) Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. J Appl Phycol 28:2999–3008

    Article  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  PubMed  CAS  Google Scholar 

  • Bobin-Dubigeon C, Lahaye M, Barry JL (1997) Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp). J Sci Food Agr 73:149–159

    Article  CAS  Google Scholar 

  • Cabrita ARJ, Maia MRG, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJM (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28:3135–3150

    Article  CAS  Google Scholar 

  • Carrillo S, López E, Casas MM, Avila E, Castillo RM, Carranco ME, CalvoF C, Pérez-Gil F (2008) Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J Appl Phycol 20:721–728

    Article  CAS  Google Scholar 

  • Cui HY, Wang CL, Wang YR, Li ZJ, Zhang YN (2015) The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264. 7 macrophages. Chin J Nat Med 13:355–360

    PubMed  CAS  Google Scholar 

  • Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14(3):42

    Article  PubMed Central  CAS  Google Scholar 

  • del Rocío Quezada-Rodríguez P, Fajer-Ávila EJ (2017) The dietary effect of ulvan from Ulva clathrata on hematological-immunological parameters and growth of tilapia (Oreochromis niloticus). J Appl Phycol 29:423–431

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PAT (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Deek AA, Brikaa AM (2009) Effect of different levels of seaweed in starter and finisher diets in pellet and mash form on performance and carcass quality of ducks. Int J Poult Sci 8:1014–1021

    Article  Google Scholar 

  • Elkin RG (2006) Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. World Poultry Sci J 62:665–687

    Google Scholar 

  • Ferreira ICFR, Heleno SA, Reis FS, Stojkovicd D, Maria João RP, Queirozb M, Vasconcelosc H, Sokovicd M (2015) Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114:38–55

    Article  PubMed  CAS  Google Scholar 

  • Filazi A, Sireli UT, Cadirci O (2005) Residues of gentamicin in eggs following medication of laying hens. Brit. Poult Sci 46:580–583

    Article  CAS  Google Scholar 

  • Fitzgerald C, Gallagher E, Tasdemir D, Hayes M (2011) Heart health peptides from macroalgae and their potential use in functional foods. J Agr Food Chem 59:6829–6836

    Article  CAS  Google Scholar 

  • Freitas MB, Ferreira LG, Hawerroth C, Duarte ME, Noseda MD, Stadnik MJ (2015) Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree. Carbohyd Polym 133:384–390

    Article  CAS  Google Scholar 

  • Geng Y, **ng L, Sun M, Su F (2016) Immunomodulatory effects of sulfated polysaccharides of pine pollen on mouse macrophages. Int J Biol Macromol 91:846–855

    Article  PubMed  CAS  Google Scholar 

  • He J, Xu Y, Chen H, Sun P (2016) Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int J Mol Sci 17:1988

    Article  PubMed Central  CAS  Google Scholar 

  • Kim JK, Cho ML, Karnjanapratum S, Shin IS, You SG (2011) In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol 49:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Kotrbáček V, Doubek J, Doucha J (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J Appl Phycol 27:2173–2180

    Article  CAS  Google Scholar 

  • Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B (2014) Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult Sci 93:2991–3001

    Article  PubMed  CAS  Google Scholar 

  • Lahaye M, Inizan F, Vigoureux J (1998) NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohyd Polym 36:239–249

    Article  CAS  Google Scholar 

  • Leiro JM, Castro R, Arranz A, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Chang J, Zhang L, Zhang J, Li S (2012) Purification and antioxidant activity of a polysaccharide from bulbs of Fritillaria ussuriensis Maxim. Int J Biol Macromol 50:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manangi MK, Vazques-Añon M, Richards JD, Carter S, Knight CD (2015) The impact of feeding supplemental chelated trace minerals on shell quality, tibia breaking strength, and immune response in laying hens. J Appl Poult Res 24:316–326

    Article  CAS  Google Scholar 

  • Meenakshi S, Umayaparvathi S, Arumugam M, Balasubramanian T (2011) In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac J Trop Biomed 1:S66–S70

    Article  Google Scholar 

  • Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:70–75

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Upadhaya SD, Kim IH (2015) Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian Australas J Anim 28:391–397

    Article  CAS  Google Scholar 

  • Qi H, Sheng J (2015) The antihyperlipidemic mechanism of high sulfate content ulvan in rats. Mar Drugs 13:3407–3421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi H, Sun Y (2015) Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Int J Biol Macromol 76:326–329

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X, Li Z (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Zhang Q, Zhao T, Hu RG, Zhang K, Li Z (2006) In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Let 16:2441–2445

    Article  CAS  Google Scholar 

  • Santin E, Maiorka A, Macari M, Grecco M, Sanchez JC, Okada TM, Myasaka AM (2001) Performance and intestinal mucosa development of broiler chickens fed diets containing Saccharomyces cerevisiae cell wall. J Appl Poult Res 10:236–244

    Article  Google Scholar 

  • Sardi L, Martelli G, Lambertini L, Parisini P, Mordenti A (2006) Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest Sci 103:95–103

    Article  Google Scholar 

  • Seedevi P, Moovendhan M, Viramani S, Shanmugam A (2017) Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohyd Polym 155:516–524.

    Article  CAS  Google Scholar 

  • Shang X, Chao Y, Zhang Y, CY L, CL X, Niu WN (2016) Immunomodulatory and antioxidant effects of polysaccharides from Gynostemma pentaphyllum Makino in immunosuppressed mice. Molecules 21:1085

    Article  CAS  Google Scholar 

  • Shang Y, Regassa A, Kim JH, Kim WK (2015) The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella enteritidis lipopolysaccharides. Poult Sci 94:2887–2897

    Article  PubMed  CAS  Google Scholar 

  • Shao P, Chen X, Sun P (2013) In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. Int J Biol Macromol 62:155–161

    Article  PubMed  CAS  Google Scholar 

  • Shargh MS, Dastar B, Zerehdaran S, Khomeiri M, Moradi A (2012) Effects of using plant extracts and a probiotic on performance, intestinal morphology, and microflora population in broilers. J Appl Poult Res 21:201–208

    Article  CAS  Google Scholar 

  • Silva M, Vieira L, Almeida AP, Kijjoa A (2013) The marine macroalgae of the genus Ulva: chemistry, biological activities and potential applications. Oceanography: Open Access 1:1–6

    Google Scholar 

  • Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 27:287–292

    Article  CAS  Google Scholar 

  • Strydom DJ (1994) Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. J Chromatogr A 678:17–23

    Article  CAS  Google Scholar 

  • Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohyd Polym 87:1206–1210

    Article  CAS  Google Scholar 

  • Synytsya A, Choi DJ, Pohl R, Na YS, Capek P, Lattova E, Taubner T, Choi JW, Lee CW, Park JK, Kim WJ, Kim SM, Lee J, Park YI (2015) Structural features and anti-coagulant activity of the sulphated polysaccharide SPS-CF from a Capsosiphon fulvescens. Mar Biotech 17:718–735

    Article  CAS  Google Scholar 

  • Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM (2012) Probiotics/direct fed microbials for Salmonella control in poultry. Food Res Int 45:628–633.

    Article  Google Scholar 

  • Wang J, Ge B, Du C (2015a) Sulfated modification promotes the immunomodulatory bioactivities of Lycium barbarum polysaccharides in vitro. Int J Clin Exp Med 8:20380–20390

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XC, Zhang HJ, Wu SG, Yue HY, Wang J, Li J, Qi GH (2015b) Dietary protein sources affect internal quality of raw and cooked shell eggs under refrigerated conditions. Asian Australas J Anim 28:1641–1648

    Article  CAS  Google Scholar 

  • Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd Polym 84:14–21

    Article  CAS  Google Scholar 

  • Yuan X, Li W, Cui Y, Zhan Q, Zhang C, Yang Z, Li X, Li S, Guan Q, Sun X (2015) Specific cellular immune response elicited by the necrotic tumor cell-stimulated macrophages. Int Immunopharmacol 27:171–176

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y (2015) Important chemical products from macroalgae (Ascophyllum nodosum) biorefinery by assistance of microwave technology. Thesis, University of York

  • Yu PZ, Zhang QB, Li N, ZH X, Wang YM, Li ZE (2003) Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J Appl Phycol 15:21–27

    Article  CAS  Google Scholar 

  • Zhang Z, Wang F, Wang X, Liu XL, Hou Y, Zhang QB (2010) Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohyd Polym 82:118–121

    Article  CAS  Google Scholar 

  • Zhao X, Hu Y, Wang D, Liu J, Guo L (2013) The comparison of immune-enhancing activity of sulfated polysaccharides from Tremella and Condonpsis pilosula. Carbohyd Polym 98:438–443

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of China (31301710) and supported by the China Agriculture Research System Poultry-related Science and Technology Innovation Team of Peking (BAIC04-2016) and the Wildlife-borne Diseases Surveillance Program of State Forestry Administration of China, the External Cooperation Program of BIC, the Chinese Academy of Sciences (152111KYSB20150023), the Wildlife-borne Diseases Surveillance Program of Bei**g Wildlife Rescue Center of China, and the Wildlife-borne Diseases Biobank Program of Chinese Academy of Sciences (CZBZX-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxuan He.

Ethics declarations

Ethical statement

All animal experiments were performed in compliance with the Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology of the People’s Republic of China. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Institute of Zoology, Chinese Academy of Sciences (approval number: IOZ20170024).

Electronic supplementary material

ESM 1

(DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Luo, J., Wang, C. et al. Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. J Appl Phycol 30, 2017–2027 (2018). https://doi.org/10.1007/s10811-017-1365-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1365-2

Keywords

Navigation