Log in

Atomic force microscopy (AFM) application to diatom study: review and perspectives

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) allows high image resolution, based on slight differences in surface height and on imaging transparent structures, thus, is an excellent type of microscopy for imaging nano-sized objects, such as diatoms. Currently and since 1992, the number of publications applying AFM on diatom studies has increased significantly. Our study considers different aspects related with AFM and diatom samples preparation, AFM types and its application in studies of taxonomy, biomineral formation, ultrastructure, mucilage layers, and micromechanical properties. We also present new AFM data highlighting the taxonomical importance of Amphipleura pellucida. From our knowledge, it is the first general review that compiles all the works carried out on Atomic force microscopy (AFM) applied to diatoms, highlighting the AFM advantages regarding the study of these microorganisms as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almqvist N, Delamo Y, Smith BL, Thomson NH, Bartholdson Å, Lal R, Brzezinski M, Hansma PK (2001) Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy. J Microsc 202:518–532

    Article  CAS  PubMed  Google Scholar 

  • Arce FT, Avci R, Beech IB, Cooksey KE, Wigglesworth-Cooksey B (2004) A live bioprobe for studying diatom-surface interactions. Biophys J 87:4284–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balnois E, Wilkinson KJ (2002) Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy. Colloids Surf A Physicochem Eng Asp 207:229–242

    Article  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA, Volcani BE (1978) The polymorphic diatom Phaeodactylum tricornutum: ultrastructure of its morphotypes. J Phycol 14:10–21

    Article  Google Scholar 

  • Bosak S, Pletikapić G, Hozić A, Svetličić V, Sarno D, Viličić D (2012) A novel type of colony formation in marine planktonic diatoms revealed by atomic force microscopy. PLoS One 7:e44851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappino ML, Volcani BE (1977) Studies on the biochemistry and fine structure of silica shell formation in diatoms VII. Sequential cell wall development in the pennate Navicula pelliculosa. Protoplasma 93:205–221

    Article  Google Scholar 

  • Chiovitti A, Higgins MJ, Harper RE, Wetherbee R, Bacic A (2003) The complex polysaccharides of the raphid diatom Pinnularia viridis (Bacillariophyceae). J Phycol 39:543–554

    Article  CAS  Google Scholar 

  • Chiovitti A, Harper RE, Willis A, Bacic A, Mulvaney P, Wetherbee R (2005) Variations in the substituted 3-linked mannans closely associated with the silicified walls of diatoms. J Phycol 41:1154–1161

    Article  CAS  Google Scholar 

  • Clarson SJ, Steinitz-Kannan M, Patwardhan SV, Kannan R, Hartig R, Schloesser L, Hamilton DW, Fusaro JKA, Beltz R (2009) Some observations of diatoms under turbulence. SILICON 1:79–90

    Article  CAS  Google Scholar 

  • Crawford SA, Higgins MJ, Mulvaney P, Wetherbee R (2001) Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J Phycol 37:543–554

    Article  Google Scholar 

  • De Stefano L, De Stefano M, De Tommasi E, Rea I, Rendina I (2011) A natural source of porous biosilica for nanotech applications: the diatoms microalgae. Phys Status Solidi C 8:1820–1825

    Article  CAS  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannel DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589

    Article  CAS  PubMed  Google Scholar 

  • Dugdale TM, Dagastine R, Chiovitti A, Mulvaney P, Wetherbee R (2005) Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys J 89:4252–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel A, Gaub HE (2008) Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148

    Article  CAS  PubMed  Google Scholar 

  • Ford CW, Percival E (1965) The carbohydrates of Phaeodactylum tricornutum. Part I. Preliminary examination of the organism, and characterisation of low molecular weight material and of a glucan. J Chem Soc 1298:7035–7041

    Article  Google Scholar 

  • Francius G, Tesson B, Dague E, Martin-Jézéquel V, Dufrêne YF (2008) Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ Microbiol 10:1344–1356

    Article  CAS  PubMed  Google Scholar 

  • Francois JM, Formosa C, Schiavone M, Pillet F, Martin-Yken H, Dague E (2013) Use of atomic force microscopy (AFM) to explore cell wall properties and response to stress in the yeast Saccharomyces cerevisiae. Curr Genet 59:187–196

    Article  CAS  PubMed  Google Scholar 

  • Gebeshuber IC, Thompson JB, Del Amo Y, Stachelberger H, Kindt JH (2002) In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Mater Sci Technol 18:763–766

    Article  CAS  Google Scholar 

  • Gebeshuber IC, Kindt JH, Thompson JB, Del Amo Y, Stachelber H, Brzezinski MA, Stucky GD, Morse DE, Hansma PK (2003) Atomic force microscopy study of living diatoms in ambient conditions. J Microsc 212:292–299

    Article  CAS  PubMed  Google Scholar 

  • Gebeshuber IC, Stachelberger H, Drack M (2005) Diatom bionanotribology—biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J Nanosci Nanotechnol 5:79–87

    Article  CAS  PubMed  Google Scholar 

  • Harper MA, Harper JF (1967) Measurements of diatom adhesion and their relationship with movement. Br Phycol Bull 3:195–207

    Article  Google Scholar 

  • Heredia A, Silva S, Santos C, Delgadillo I, Vrieling EG (2008) Analysis of cross-sections of Ditylum brightwelli biosilica by tap** mode atomic force microscopy and scanning electron microscopy. J Scann Probe Microsc 3:19–24

    Article  CAS  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2000) The topography of soft, adhesive diatom ‘trails’ as observed by atomic force microscopy. Biofouling 16:133–139

    Article  Google Scholar 

  • Higgins MJ, Crawford SA, Mulvaney P, Wetherbee R (2002) Characterization of the adhesive mucilages secreted by live diatom cells using atomic force microscopy. Protist 153:25–38

    Article  PubMed  Google Scholar 

  • Higgins MJ, Sader JE, Mulvaney P, Wetherbee R (2003a) Probing the surface of living diatoms with atomic force microscopy: the nanostructure and nanomechanical properties of the mucilage layer. J Phycol 39:722–734

    Article  Google Scholar 

  • Higgins MJ, Molino P, Mulvaney P, Wetherbee R (2003b) The structure and nanomechanical properties of the adhesive mucilage that mediates diatom-substratum adhesion and motility. J Phycol 39:1181–1193

    Article  CAS  Google Scholar 

  • Hildebrand M, York E, Kelz JI, Davis AK, Frigeri LG, Allison DP, Doktycz MJ (2006) Nanoscale control of silica morphology and three-dimensional structure during diatom cell wall formation. J Mater Res 21:2689–2698

    Article  CAS  Google Scholar 

  • Hildebrand M, Frigeri LG, Davis AK (2007) Synchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycle. J Phycol 43:730–740

    Article  CAS  Google Scholar 

  • Hildebrand M, Doktycz MJ, Allison DP (2008) Application of AFM in understanding biomineral formation in diatoms. Pflugers Arch Eur J Physiol 456:127–137

    Article  CAS  Google Scholar 

  • Hildebrand M, Holton G, Joy DC, Doktycz MJ, Allison DP (2009) Diverse and conserved nano- and mesoscale structures of diatom silica revealed by atomic force microscopy. J Microsc 235:172–187

    Article  CAS  PubMed  Google Scholar 

  • Hlúbiková D, Luís AT, Vaché V, Ector L, Hoffmann L, Choquet P (2012) Optimization of the replica molding process of PDMS using pennate diatoms. J Micromech Microeng 22:115019

    Article  Google Scholar 

  • Karp-Boss L, Gueta R, Rousso I (2014) Judging diatoms by their cover: variability in local elasticity of Lithodesmium undulatum undergoing cell division. PLoS One 9:e109089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolbe R, Golz E (1943) Elektronenoptische Diatomeen Studien. Ber Deutsch Bot Ges 61:91–98

    Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  Google Scholar 

  • Lewin JC (1955) The capsule of the diatom Navicula pelliculosa. J Gen Microbiol 13:162–169

    Article  CAS  PubMed  Google Scholar 

  • Lewin JC, Lewin RA, Philpott DE (1958) Observations on Phaeodactylum tricornutum. J Gen Microbiol 18:418–426

    Article  CAS  PubMed  Google Scholar 

  • Linder A, Colchero J, Apell HJ, Marti O, Mlynek J (1992) Scanning force microscopy of diatom shells. Ultramicroscopy 42–44:329–332

  • Losic D, Mitchell JG, Voelcker NH (2006a) Fabrication of gold nanostructures by templating from porous diatom frustules. New J Chem 30:908–914

    Article  CAS  Google Scholar 

  • Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006b) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotech 6:982–989

    Article  CAS  Google Scholar 

  • Losic D, Pillar RJ, Dilger T, Mitchell JG, Voelcker NH (2007a) Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J Porous Mater 14:61–69

    Article  CAS  Google Scholar 

  • Losic D, Short K, Mitchell JG, Lal R, Voelcker NH (2007b) AFM nanoindentations of diatom biosilica surfaces. Langmuir 23:5014–5021

    Article  CAS  PubMed  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2008) Diatom culture media contain extracellular silica nanoparticles which form opalescent films. In: Voelcker NH, Thissen HW (eds) Smart Materials V. Proc. SPIE 7267:726712

  • Lowenstam HA, Epstein S (1957) On the origin of sedimentary aragonite needles of the great Bahama Bank. J Geol 65:364–375

    Article  CAS  Google Scholar 

  • Noll F, Sumper M, Hampp N (2002) Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Lett 2:91–95

    Article  CAS  Google Scholar 

  • Pickett-Heaps J, Schmid AMM, Edgar LA (1990) The cell biology of diatom valve formation. Prog Phycol Res 7:1–168

    CAS  Google Scholar 

  • Pletikapić G, Radić TM, Zimmermann AH, Svetličić V, Pfannkuchen M, Marić D, Godrijan J, Žutić V (2011) AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & J.C. Lewin. J Mol Recognit 24:436–445

    Article  PubMed  Google Scholar 

  • Pletikapić G, Berquand A, Radić TM, Svetličić V (2012) Quantitative nanomechanical map** of marine diatom in seawater using peak force tap** atomic force microscopy. J Phycol 48:174–185

    Article  PubMed  Google Scholar 

  • Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  CAS  PubMed  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: Biology & morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Rugar D, Hansma P (1990) Atomic force microscopy. Phys Today 43:23–30

    Article  CAS  Google Scholar 

  • Scheffel A, Poulsen N, Shian S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci U S A 108:3175–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763

    Article  CAS  Google Scholar 

  • Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Ber Forschungszentrum Terramare 12:109–111

    Google Scholar 

  • Strzelecki J, Dąbrowski M, Strzelecka J, Tszydel M, Mikulska K, Nowak W, Balter A (2012) AFM investigation of biological nanostructures. Acta Phys Pol A 122:329–332

    Article  CAS  Google Scholar 

  • Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065

    Article  CAS  Google Scholar 

  • Svetličić V, Žutić V, Radić TM, Pletikapić G, Zimmermann AH, Urbani R (2011) Polymer networks produced by marine diatoms in the northern Adriatic Sea. Mar Drugs 9:666–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Svetličić V, Žutić V, Pletikapić G, Radić TM (2013) Marine polysaccharide networks and diatoms at the nanometric scale. Int J Mol Sci 14:20064–20078

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesson B, Hildebrand M (2010) Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. J Struct Biol 169:62–74

    Article  CAS  PubMed  Google Scholar 

  • Tesson B, Hildebrand M (2013) Characterization and localization of insoluble organic matrices associated with diatom cell walls: insight into their roles during cell wall formation. PLoS One 8:e61675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuda H (1969) Excretion of carbohydrate by a marine pennate diatom, Nitzschia closterium. Rec Oceanogr Works Jpn 10:109–122

    CAS  Google Scholar 

  • Villacorte LO, Ekowati Y, Neu TR, Kleijn JM, Winters H, Amy G, Schippers JC, Kennedy MD (2015) Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Res 73:216–230

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang D, Cai J, Pan J, Chen M, Li A, Jiang Y (2012) Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl Microbiol Biotechnol 95:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Weyn B, Kalle W, Kumar-Singh S, Van Marck E, Tanke H, Jacob W (1998) Atomic force microscopy: influence of air drying and fixation on the morphology and viscoelasticity of cultured cells. J Microsc 189:172–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out in the framework of the project REVAD (C08/MS/10) supported by the National Research Fund of Luxembourg. We are grateful to Dr. Diba Khan-Bureau, Professor & Program Coordinator of Environmental Engineering Technology & Biology TAP CSCU Pathways from Three Rivers Community College (Norwich, Connecticut, USA) for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana T. Luís.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luís, A.T., Hlúbiková, D., Vaché, V. et al. Atomic force microscopy (AFM) application to diatom study: review and perspectives. J Appl Phycol 29, 2989–3001 (2017). https://doi.org/10.1007/s10811-017-1177-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1177-4

Keywords

Navigation