Log in

Changes in the accumulation of alkenones and lipids under nitrogen limitation and its relation to other energy storage metabolites in the haptophyte alga Emiliania huxleyi CCMP 2090

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Alkenones are long-chain methyl/ethyl ketones (mainly in length of C37-C39) with two to four trans-unsaturated bonds produced by several kinds of marine haptophytes such as Emiliania huxleyi (coccolithophore). The physiological functions and metabolic profile of alkenones are not well known yet. In this study, we focused on elucidating how alkenones contribute to energy storage and cellular carbon partitioning in relation to other cellular components. For the purpose, we analyzed the changes in carbon allocation among various cell components like lipids, alkenones, proteins, and polysaccharides between cells exposed to N-sufficient (+N) and N-limited conditions (−N) in E. huxleyi CCMP 2090. Finally, the alkenones were found to function as main storage lipids and their accumulation was clearly increased by −N, whereas triacylglycerols (TAGs) were barely detected under any N conditions. The mobilization of carbons into alkenones was stimulated by −N from 15% under +N to 27% under −N. However, photosynthetic C allocation into other components was suppressed by −N, showing that percent C allocation into fatty acids, proteins, and polysaccharides was decreased from 9, 46, and 6.8% under +N to 7, 25, and 4.5% under −N, respectively. In addition, fatty acids such as 16:0, 18:0, 18:1, and 18:2 became dominant under −N while 18:5 became dominant under +N conditions, with no significant change in 22:6. This study revealed that alkenones function as primary carbon storage pools especially under −N condition in E. huxleyi CCMP 2090 and that N supply triggers a dynamic change in carbon metabolism by modifying membrane lipid composition and regulating carbon allocation preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T (2015) Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Exp Bot 66:6281–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JW, DiRusso CC, Black PN (2015) Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Res 10:110–120

    Article  Google Scholar 

  • Bai X, Song H, Lavoie M, Zhu K, Su Y, Ye H, Chen S, Fu Z, Qian H (2016) Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci Rep 6:25494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball SG, Dirick L, Decq A, Martiat JC, Matagne R (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66:1–9

    Article  CAS  Google Scholar 

  • Bell MV, Pond D (1996) Lipid composition during growth of motile and coccolith forms of Emiliania huxleyi. Phytochemistry 2:465–471

    Article  Google Scholar 

  • Benavente-Valdésa JR, Aguilara C, Contreras-Esquivela JC, Méndez-Zavalab A, Montañezb J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnol Rep 10:117–125

    Article  Google Scholar 

  • Benthien A, Zondervan I, Engel A, Hefter J, Terbruggen A, Riebesell U (2007) Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: effects of CO2 concentration and primary production. Geochim Cosmochim Acta 71:1528–1541

    Article  CAS  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  PubMed  Google Scholar 

  • Brassell SC (1993) Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel MH, Macko SA (eds) Org Geochem, vol 699. Plenum Press, New York, p 738

    Google Scholar 

  • Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  CAS  Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    Article  CAS  Google Scholar 

  • Choi GG, Kim BH, Ahn CY, Oh HM (2011) Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. J Appl Phycol 23:1031–1037

    Article  CAS  Google Scholar 

  • Conte MH, Volkman JK, Eglinton G (1994) Lipid biomarkers of the Haptophyta. In: Green JC, BSC L (eds) The Haptophyte Algae. Clarendon Press, Oxford, pp 351–377

    Google Scholar 

  • Conte MH, Thompson A, Eglinton G (1995) Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and related species Gephyrocapsa oceanica. J Phycol 31:272–282

    Article  CAS  Google Scholar 

  • Conte MH, Thompson A, Lesley D, Harris RP (1998) Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim Cosmochim Acta 62:51–68

    Article  CAS  Google Scholar 

  • Cranwell PA (1985) Long-chain unsaturated ketones in recent lacustrine sediments. Geochim Cosmochim Acta 49:1545–1551

    Article  CAS  Google Scholar 

  • Danbara A, Shiraiwa Y (1999) The requirement of selenium for the growth of marine coccolithophorids, Emiliania huxleyi, Gephyrocapsa oceanica and Helladosphaera sp. (Prymnesiophyceae). Plant Cell Physiol 40:762–766

    Article  CAS  Google Scholar 

  • Dassow VP, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie JM, De Vargas C (2009) Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol 10:R114

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty-acid content of 3 microalgae grown in mass-culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  • Elton CG, Ann CW, Matias K, Bala R (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J 14:1649–1660

    Article  Google Scholar 

  • Epstein BL, D’Hondt SD, Quinn JG, Zhang J, Hargraves PE (1998) An effect of dissolved nutrient concentrations on based temperature estimates alkenone. Paléo 13:122–126

    Google Scholar 

  • Epstein BL, D’Hondt S, Hargraves PE (2001) The possible metabolic role of C37 alkenones in Emiliania huxleyi. Org Geochem 32:867–875

    Article  CAS  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991

    Article  CAS  PubMed  Google Scholar 

  • Fernández E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58:2279–2287

    Article  PubMed  Google Scholar 

  • Fernández E, Balch WM, Marañón E, Holligan PM (1994) High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 114:13–22

    Article  Google Scholar 

  • Fernández E, Marañon E, Balch WM (1996a) Intracellular carbon partitioning in the coccolithophorid Emiliania huxleyi. J Mar Syst 9:57–66

    Article  Google Scholar 

  • Fernández E, Maranon E, Harbour DS, Kristiansen S, Heimdal BR (1996b) Patterns of carbon and nitrogen uptake during blooms of Emiliania huxleyi in two Norwegian fjords. J Plankton Res 18:2349–2366

    Article  Google Scholar 

  • Fichtinger-Schepman AMJ, Kamerling JP, Versluis C, Vliegenthart JFG (1981) Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydr Res 93:105–123

    Article  CAS  Google Scholar 

  • Flynn KJ, Davidson K, Cunningham A (1993a) Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytol 125:717–722

    Article  Google Scholar 

  • Flynn KJ, Zapata M, Garrido JL, Öpik H, Hipkin CR (1993b) Changes in carbon and nitrogen physiology during ammonium and nitrate nutrition and nitrogen starvation in Isochrysis galbana. Eur J Phycol 28:47–52

    Article  Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem Cycles 6:185–198

    Article  CAS  Google Scholar 

  • Garnier M, Bougaran G, Pavlovic M, Berard JB, Carrier G, Charrier A, Le GF, Lukomska E, Schreiber N, Cadoret JP, Rogniaux H, Saint-Jean B (2016) Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. Algal Res 2:229–248

    Article  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. In: Whistler RL, Wolfrom ML (eds) Methods in Carbohydrate Chemistry, vol. 1. Academic Press, New York, pp 380–394

  • Houdan A, Probert I, Van Lenning K, Lefebvre S (2005) Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Mar Ecol Prog Ser 292:139–146

    Article  CAS  Google Scholar 

  • Hunter JE, Frada MJ, Fredricks HF, Vardi A, Van Mooy BAS (2015) Targetted and untargetted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Front Mar Sci 2:81

    Article  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12:808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasper JP, Hayes JM (1990) A carbon isotope record of CO2 levels during the Late Quaternary. Nature 347:462–464

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW (1972) Preparation and some properties of crystalline chlorophyll c 1 and c 2 from marine algae. Biochem Biophys Acta 279:15–33

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77

    Article  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaffes A, Thoms S, Trimborn S, Rost B, Langer G, Richter KU, Angela K, Norici A, Giordano M (2010) Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. J Exp Mar Biol Ecol 393:1–8

    Article  CAS  Google Scholar 

  • Kayano K, Shiraiwa Y (2009) Physiological regulation of coccolith polysaccharide production by phosphate availability in the coccolithophorid Emiliania huxleyi. Plant Cell Physiol 50:1522–1531

    Article  CAS  PubMed  Google Scholar 

  • Klein U (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol 85:892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotajima T, Shiraiwa Y, Suzuki I (2014) Functional screening of a novel Δ15 fatty acid desaturase from the coccolithophorid Emiliania huxleyi. Biochim Biophys Acta 1842:1451–1458

    Article  PubMed  Google Scholar 

  • Lacour T, Sciandra A, Talec A, Mayzaud P (2012) Neutral lipid and carbohydrate productivities as a response to nitrogen status in Isochrysis sp. (T-ISO; Haptophyceae): starvation versus limitation. J Phycol 48:647–656

    Article  CAS  PubMed  Google Scholar 

  • Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res 38:143–167

    Article  CAS  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  PubMed  Google Scholar 

  • Loebl M, Cockshutt AM, Campbell D, Finkel ZV (2010) Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnol Oceanogr 55:2150–2160

    Article  CAS  Google Scholar 

  • Malitsky S, Ziv C, Rosenwasser S, Zheng S, Schatz D, Porat Z, Ben-Dor S, Aharoni A, Vardi A (2016) Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol 210:88–96

    Article  CAS  PubMed  Google Scholar 

  • Marlowe IT, Brassell SC, Eglinton G, Green JC (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141

    Article  CAS  Google Scholar 

  • McKew BA, Stephane CL, Eric PA, Gergana M, Christine AR, Metodi V, Richard J (2013) Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted. New Phytol 200:61–73

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Tonon T, Scornet D, Mark CJ, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in eukaryotes. New Phytol 188:67–81

    Article  CAS  PubMed  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Müller PJ, Kirst G, Ruhland G, von Storch I, Rosell-Mele A (1998) Calibration of the alkenone paleotemperature index U37 K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62:1757–1772

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nakamura H, Sawada K, Araie H, Suzuki I, Shiraiwa Y (2014) Long chain alkenes, alkenones and alkenoates produced by the haptophyte alga Chrysotila lamellosa CCMP1307 isolated from a salt marsh. Org Geochem 66:90–97

    Article  CAS  Google Scholar 

  • Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Shayani P, Omar FH, Barry D, Tanner S, Richard S (2016) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  CAS  PubMed  Google Scholar 

  • O’Neil GW, Williams JR, Wilson-Peltier J, Knothe G, Reddy CM (2016) Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass. J Vis Exp 2016(112):54189

    Google Scholar 

  • Obata T, Schoenefeld S, Krahnert I, Bergmann S, Scheffel A, Fernie AR (2013) Gas-chromatography mass-spectrometry (GC-MS) based metabolite profiling reveals mannitol as a major storage carbohydrate in the coccolithophorid alga Emiliania huxleyi. Metabolites 3:168–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono M, Sawada K, Shiraiwa Y, Kubota M (2012) Changes in alkenone and alkenoate distributions during acclimatization to salinity change in Isochrysis galbana: implication for alkenone-based paleosalinity and paleothermometry. Geo Chem J 46:235–247

    CAS  Google Scholar 

  • Pagani M, Freeman KH, Ohkouchi N, Caldeira K (2002) Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: a test of the alkenone-CO2 proxy. Paleoceanography 17:21-1–21-12

    Article  Google Scholar 

  • Pan H, Sun MY (2011) Variations of alkenone based paleotemperature index (U K′ 37 ) during Emiliania huxleyi cell growth, respiration (auto-metabolism) and microbial degradation. Org Geochem 42:678–687

    Article  CAS  Google Scholar 

  • Pan H, Culp RA, Noakes JE, Sun MY (2014) Effects of growth stages, respiration, and microbial degradation of phytoplankton on cellular lipids and their compound-specific stable carbon isotopic compositions. J Exp Mar Biol Ecol 461:7–19

    Article  CAS  Google Scholar 

  • Pan H, Culp RA, Sun MY (2017) Influence of physiological states of Emiliania huxleyi cells on their lipids and associated molecular isotopic compositions during microbial degradation. J Exp Mar Biol Ecol 488:1–9

    Article  CAS  Google Scholar 

  • Parrish CC, Wells JS, Yang ZP, Dabinett P (1998) Growth and lipid composition of scallop juveniles, Placopecten magellanicus, fed the agellate Isochrysis galbana with varying lipid composition and the diatom Chaetoceros muelleri. Mar Biol 133:461–471

    Article  Google Scholar 

  • Pond DW, Harris RP (1996) The lipid composition of the coccolithophore Emiliania huxleyi and its possible ecophysiological significance. J Mar Biol Assoc UK 76:579–594

    Article  CAS  Google Scholar 

  • Popp BN, Kenig F, Wakeham SG, Laws EA, Bidigare RR (1998) Does growth rate affect ketone unsaturation and intercellular carbon isotopic variability in Emiliania huxleyi? Paleoceanography 13:35–41

    Article  Google Scholar 

  • Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  • Prahl FG, Wolfe GV, Sparrow MA (2003) Physiological impacts on alkenone paleothermometry. Paleoceanography 18:1025

    Google Scholar 

  • Raven JA, Crawfurd K (2012) Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 470:137–166

    Article  CAS  Google Scholar 

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    Article  CAS  PubMed  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. Phycologia 30:972–979

    Article  CAS  Google Scholar 

  • Riebesell U, Revill AT, Holdsworth DG, Volkman JK (2000) The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochim Cosmochim Acta 64:4179–4192

    Article  CAS  Google Scholar 

  • Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36:87–96

    Article  CAS  Google Scholar 

  • Rokitta SD, Peter VD, Björn R, Uwe J (2014) Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics 15:1051

    Article  PubMed  PubMed Central  Google Scholar 

  • Rontani BB, Volkman JK (2004) Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65:117–126

    Article  CAS  PubMed  Google Scholar 

  • Sawada K, Shiraiwa Y (2004) Alkenone and alkenoic acid compositions of the membrane fractions of Emiliania huxleyi. Phytochemistry 65:1299–1307

    Article  CAS  PubMed  Google Scholar 

  • Sawada K, Handa N, Shiraiwa Y, Danbara A, Montani S (1996) Long-chain alkenones and alkyl alkenoates in the coastal and pelagic sediments of the northwest North Pacific, with special reference to the reconstruction of Emiliania huxleyi and Gephyrocapsa oceanica ratios. Org Geochem 24:751–764

    Article  CAS  Google Scholar 

  • Shemi A, Schatz D, Fredricks HF, Van Mooy BA, Porat Z, Vardi A (2016) Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytol 211:886–898

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Araie H, Bakku RK, Fukao Y, Rakwal R, Suzuki I, Shiraiwa Y (2015) Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea. Proteomics 15:4145–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Elvitigala T, Bhattacharyya-Pakrasi M, Aurora R, Ghosh B, Pakrasi H (2008) Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol 148:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrosa JM, Yamamoto M, Siraiwa Y (2003) Non thermal factors affecting production and unsaturation of alkenones in Emiliania huxleyi and Gephyrocapsa oceanica. In: Murata N, Yamada M, Nishida I, Okuyama H, Sekiya J, Wada H (eds) Adv Res Plant Lipids, vol 133. Kluwer Academic Publishers, Dordrecht, pp 133–136

  • Talmy D, Blackford J, Hardman-Mountford NJ, Polimene L, Follows MJ, Geider RJ (2014) Flexible C: N ratio enhances metabolism of large phytoplankton when resource supply is intermittent. Biogeosciences 11:4881–4895

    Article  Google Scholar 

  • Theissen KM, Zinniker DA, Moldowan JM, Dunbar RB, Rowe HD (2005) Pronounced occurrence of long-chain alkenones and dinosterol in a 25,000-year lipid molecular fossil record from Lake Titicaca, South America. Geochim Cosmochim Acta 69:623–636

    Article  CAS  Google Scholar 

  • Theroux S, D’Andrea WJ, Toney J, Amaral-Zettler L, Huang YS (2010) Phylogenetic diversity and evolutionary relatedness of alkenone-producing haptophyte algae in lakes: implications for continental paleotemperature reconstructions. Earth Planet Sci Lett 300:311–320

    Article  CAS  Google Scholar 

  • Toney JL, Huang Y, Fritz SC, Baker PA, Grimm E, Nyren P (2010) Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim Cosmochim Acta 74:1563–1578

    Article  CAS  Google Scholar 

  • Tsuji Y, Yamazaki M, Suzuki I, Shiraiwa Y (2015) Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine coccolithophore, Emiliania huxleyi. Mar Biotechnol 17:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Varum KM, Kvam BJ, Myklestad S (1986) Structure of a food-reserve β-D-glucan produced by the haptophyte alga Emiliania huxleyi (Lohmann) Hay and Mohler. Carbohydr Res 152:243–248

    Article  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Forsserg TEV (1980a) Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 19:2619–2622

    Article  Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Sargent JR (1980b) Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi. Phys Chem Earth 12:219–227

    Article  CAS  Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Article  CAS  Google Scholar 

  • Weger HG, Turpin DH (1989) Mitochondrial respiration can support NO3 and NO2 reduction during photosynthesis. Interactions between photosynthesis, respiration, and N assimilation in the N-limited green alga Selenastrum minutum. Plant Physiol 89:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Reddy CM, Farrington JW, Frysinger GS, Gaines RB, Johnson CG, Nelson RK, Eglinton TI (2001) Identification of a novel alkenone in Black Sea sediments. Org Geochem 32:633–645

    Article  CAS  Google Scholar 

  • Yamamoto M, Shiraiwa Y, Inouye I (2000) Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry. Org Geochem 31:799–811

    Article  CAS  Google Scholar 

  • Zhao J, An C, Longo WM, Dillon JT, Zhao Y, Shi C, Chen Y, Huang Y (2014) Occurrence of extended chain length C41 and C42 alkenones in hypersaline lakes. Org Geochem 75:48–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST) [CREST/JST] to YS (FY2010-2016) in the research area of “Creation of Basic Technology for Improved Bioenergy Production through Functional Analysis and Regulation of Algae and Other Aquatic Microorganisms” supervised by Prof. Dr. T. Matsunaga. We thank Dr. R. Rakwal of the University of Tsukuba for providing assistance for English proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwane Suzuki.

Electronic supplementary material

ESM 1

(DOCX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakku, R.K., Araie, H., Hanawa, Y. et al. Changes in the accumulation of alkenones and lipids under nitrogen limitation and its relation to other energy storage metabolites in the haptophyte alga Emiliania huxleyi CCMP 2090. J Appl Phycol 30, 23–36 (2018). https://doi.org/10.1007/s10811-017-1163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1163-x

Keywords

Navigation