Log in

Development and performance assessment of a multi-walled carbon nanotube/iron oxide nanocomposite-based electrochemical immunosensor for precise and ultrasensitive detection of carcinoembryonic antigen

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical immunosensor was designed and fabricated for the purpose of sensing the carcinoembryonic antigen (CEA) biomarker. The immunosensor utilized a novel approach for surface modification with a composite comprising Fe3O4 nanoparticles decorated on carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs). This distinctive surface tailoring of the glassy carbon electrode (GCE), amplified signals and facilitated electron transfer. The MWCNTs with COOH groups served as an excellent substrate for electrode modification, enabling the formation of a sandwich-like structure by binding to anti-CEA antibody. Additionally, Fe3O4 nanoparticles played a crucial role in electron transfer facilitation. The presence of HRP conjugated with the anti-CEA antibody triggered the reduction of H2O2 in the electrochemical system of the sensor, resulting in an augmentated current. The concentration of CEA was directly proportional to the immunosensor analytical performance. The immunosensor demonstrated a suitable linear range from 0.005 ng mL−1 to 2.5 ng mL−1, with a limit of detection (LOD) of 0.3 pg mL−1. Notably, this immunosensor demonstrated exceptional reproducibility and stability, showcasing its suitability for measuring CEA in both real serum samples. These promising outcomes establish an overview for the adoption of such sensors into diagnostic clinics in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CEA:

Carcinoembryonic antigen

HRP:

Horseradish peroxidase

DPV:

Differential pulse voltammetry

CV:

Cyclic voltammetry

MWCNT:

Multi-walled carbon nanotube

GCE:

Glassy carbon electrode

XRD:

X-ray diffraction

FESEM:

Field emission scanning electron microscopy

HRTEM:

High-resolution transmission electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

EIS:

Electrochemical impedance spectroscopy

RSD:

Relative standard deviation

BSA:

Bovine serum albumin

LOD:

Limit of detection

Ab1 :

Anti-total CEA antibody

Ab2 :

HRP labeled anti-free CEA antibody

References

  1. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health 8:e180–e190

    Article  PubMed  Google Scholar 

  2. Cabasag CJ, Vignat J, Ferlay J, Arndt V, Lemmens V, Praagman J, Bray F, Soerjomataram I (2022) The preventability of cancer in Europe: a quantitative assessment of avoidable cancer cases across 17 cancer sites and 38 countries in 2020. Eur J Cancer 177:15–24

    Article  PubMed  Google Scholar 

  3. Landegren U, Hammond M (2021) Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Mol Oncol 15:1715–1726

    Article  PubMed  Google Scholar 

  4. Sarhadi VK, Armengol G (2022) Molecular biomarkers in cancer. Biomolecules 12:1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Campos-da-Paz M, Dórea JG, Galdino AS, Lacava ZG, de Fatima Menezes Almeida Santos M (2018) Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Patents Biotechnol 12:269–279

    Article  CAS  Google Scholar 

  6. Hao C, Zhang G, Zhang L (2019) Serum CEA levels in 49 different types of cancer and noncancer diseases. Prog. Mol. Biol. Trans. Sci. 162:213–227

    Article  CAS  Google Scholar 

  7. Taleat Z, Cristea C, Marrazza G, Mazloum-Ardakani M, Săndulescu R (2014) Electrochemical immunoassay based on aptamer–protein interaction and functionalized polymer for cancer biomarker detection. J Electroanal Chem 717:119–124

    Article  Google Scholar 

  8. Liu Y, Wang H, Huang J, Yang J, Liu B, Yang P (2009) Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal Chim Acta 650:77–82

    Article  CAS  PubMed  Google Scholar 

  9. Wang J, Wang Q, Ren L, Wang X, Wan Z, Liu W, Li L, Zhao H, Li M, Tong D (2009) Carboxylated magnetic microbead-assisted fluoroimmunoassay for early biomarkers of acute myocardial infarction. Colloids Surf B 72:112–120

    Article  CAS  Google Scholar 

  10. Zhan J, Shi F, Li J, Zeng H, Chen M, Hu X, Yang Z (2023) DNAzyme@ CuSNPs dual mimic enzyme probe-amplified chemiluminescent imaging array immunosensor for multiple chicken cytokines detection. Chin Chem Lett 34:108791

    Article  CAS  Google Scholar 

  11. Chen X, Jia X, Han J, Ma J, Ma Z (2013) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens Bioelectron 50:356–361

    Article  CAS  PubMed  Google Scholar 

  12. Dai Y, Liu CC (2019) Recent advances on electrochemical biosensing strategies toward universal point-of‐care systems. Angew Chem 131:12483–12496

    Article  Google Scholar 

  13. Cao J, Ouyang P, Yu S, Shi F, Ren C, Wang C, Shen M, Yang Z (2021) Hedgehog-like Bi 2 S 3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker. Chem Commun 57:1766–1769

    Article  CAS  Google Scholar 

  14. Bahadır EB, Sezgintürk MK (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–174

    Article  Google Scholar 

  15. Zhang A, Huang C, Shi H, Guo W, Zhang X, **ang H, Jia T, Miao F, Jia N (2017) Electrochemiluminescence immunosensor for sensitive determination of tumor biomarker CEA based on multifunctionalized flower-like Au@ BSA nanoparticles. Sens Actuators B 238:24–31

    Article  CAS  Google Scholar 

  16. Zhang X, Zambrano A, Lin Z-T, **ng Y, Rippy J, Wu T (2017) Immunosensors for biomarker detection in autoimmune diseases. Archivum Immunologiae et therapiae experimentalis 65:111–121

    Article  CAS  PubMed  Google Scholar 

  17. Shamsazar A, Soheili-Moghaddam M, Asadi A (2024) A novel electrochemical immunosensor based on MWCNT/CuO nanocomposite for effectively detection of carcinoembryonic antigen (CEA). Microchem J 196:109643

    Article  CAS  Google Scholar 

  18. Medetalibeyoglu H, Kotan G, Atar N, Yola ML (2020) A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal Chim Acta 1139:100–110

    Article  CAS  PubMed  Google Scholar 

  19. Zhang C, Zhang S, Jia Y, Li Y, Wang P, Liu Q, Xu Z, Li X, Dong Y (2019) Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of ag NPs@ CS spaced Hemin/rGO. Biosens Bioelectron 126:785–791

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Zhao G, Zhang Y, Pang X, Cao W, Du B, Wei Q (2018) Sandwich-type electrochemical immunosensor for CEA detection based on Ag/MoS2@ Fe3O4 and an analogous ELISA method with total internal reflection microscopy. Sens Actuators B 266:561–569

    Article  CAS  Google Scholar 

  21. Lara S, Perez-Potti A (2018) Applications of nanomaterials for immunosensing. Biosensors 8:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao X, Zhang Y, Chen H, Chen Z, Lin X (2011) Amperometric immunosensor for carcinoembryonic antigen detection with carbon nanotube-based film decorated with gold nanoclusters. Anal Biochem 414:70–76

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Wang Y, Wu D, Ma H, Zhang Y, Fan D, Pang X, Du B, Wei Q (2018) Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens Actuators B 255:125–132

    Article  CAS  Google Scholar 

  24. Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q (2017) A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosen Bioelectron 91:441–448

    Article  CAS  Google Scholar 

  25. Kharissova OV, Kharisov BI, de Casas EG, Ortiz (2013) Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv 3:24812–24852

    Article  CAS  Google Scholar 

  26. Suwattanamala A, Bandis N, Tedsree K, Issro C (2017) Synthesis, characterization and adsorption properties of Fe3O4/MWCNT magnetic nanocomposites. Mater Today Proc 4:6567–6575

    Article  Google Scholar 

  27. Li N, Wang Y, Cao W, Zhang Y, Yan T, Du B, Wei Q (2015) An ultrasensitive electrochemical immunosensor for CEA using MWCNT-NH 2 supported PdPt nanocages as labels for signal amplification. J Mater Chem B 3:2006–2011

    Article  CAS  PubMed  Google Scholar 

  28. Hong W, Lee S, Cho Y (2016) Dual-responsive immunosensor that combines colorimetric recognition and electrochemical response for ultrasensitive detection of cancer biomarkers. Biosens Bioelectron 86:920–926

    Article  CAS  PubMed  Google Scholar 

  29. Arévalo P, Isasi J, Caballero A, Marco J, Martín-Hernández F (2017) Magnetic and structural studies of Fe3O4 nanoparticles synthesized via coprecipitation and dispersed in different surfactants. Ceram Int 43:10333–10340

    Article  Google Scholar 

  30. Huang K-J, Niu D-J, **e W-Z, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes–chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102–108

    Article  CAS  PubMed  Google Scholar 

  31. Shamsazar A, Asadi A, Seifzadeh D, Mahdavi M (2021) A novel and highly sensitive sandwich-type immunosensor for prostate-specific antigen detection based on MWCNTs-Fe3O4 nanocomposite. Sens Actuators B 346:130459

    Article  CAS  Google Scholar 

  32. Kong F-Y, Xu M-T, Xu J-J, Chen H-Y (2011) A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles–thionine–reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta 85:2620–2625

    Article  CAS  PubMed  Google Scholar 

  33. Baghayeri M, Ansari R, Nodehi M, Razavipanah I, Veisi H (2018) Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@ gold nanocomposite. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  34. Zhao Y, Zheng Y, Kong R, **a L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly (acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388

    Article  CAS  PubMed  Google Scholar 

  35. Manasa G, Mascarenhas RJ, Malode SJ, Shetti NP (2022) Graphene-based electrochemical immunosensors for early detection of oncomarker carcinoembryonic antigen. Biosen Bioelectron. https://doi.org/10.1016/j.biosx.2022.100189

    Article  Google Scholar 

  36. Wang L, Meng T, Zhao D, Jia H, An S, Yang X, Wang H, Zhang Y (2020) An enzyme-free electrochemical biosensor based on well monodisperse au nanorods for ultra-sensitive detection of telomerase activity. Biosens Bioelectron 148:111834

    Article  CAS  PubMed  Google Scholar 

  37. Moazzen M, Khaneghah AM, Shariatifar N, Ahmadloo M, Eş I, Baghani AN, Yousefinejad S, Alimohammadi M, Azari A, Dobaradaran S (2019) Multi-walled carbon nanotubes modified with iron oxide and silver nanoparticles (MWCNT-Fe3O4/Ag) as a novel adsorbent for determining PAEs in carbonated soft drinks using magnetic SPE-GC/MS method. Arab J Chem 12:476–488

    Article  CAS  Google Scholar 

  38. Darton NJ, Ionescu A, Llandro J (2019) Magnetic nanoparticles in biosensing and medicine. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Safa F, Alinezhad Y (2020) Ternary nanocomposite of SiO2/Fe3O4/multi-walled carbon nanotubes for efficient adsorption of malachite green: response surface modeling, equilibrium isotherms and kinetics. Silicon 12:1619–1637

    Article  CAS  Google Scholar 

  40. Chaki S, Malek TJ, Chaudhary M, Tailor J, Deshpande M (2015) Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv Nat Sci NanoSci NanoTechnol 6:035009

    Article  Google Scholar 

  41. Lv Z, Wang Q, Bin Y, Huang L, Zhang R, Zhang P, Matsuo M (2015) Magnetic behaviors of Mg-and Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size, dielectric response, and application of Fe3O4/carbon nanotube composites to anodes for lithium ion batteries. J Phys Chem C 119:26128–26142

    Article  CAS  Google Scholar 

  42. Cong Y, Li X, Qin Y, Dong Z, Yuan G, Cui Z, Lai X (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B 107:128–134

    Article  CAS  Google Scholar 

  43. Wulandari S, Widiyandari H, Subagio A (2018) Synthesis and characterization carboxyl functionalized multi-walled carbon nanotubes (MWCNT-COOH) and NH2 functionalized multi-walled carbon nanotubes (MWCNTNH2). J Phys. https://doi.org/10.1088/1742-6596/1025/1/012005

    Article  Google Scholar 

  44. Lopez JA, González F, Bonilla FA, Zambrano G, Gómez ME (2010) Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista Latinoamericana de Metalurgia y Materiales 30:60–66

    Google Scholar 

  45. **a Y, Chen H, Liu R, Shi F, Ren C, Li J, Zhao J, Chen X, Yang Z (2023) Mesoporous SiO2 sphere-based electrochemical impedance immunosensor for ultrasensitive detection of bovine interferon-γ. J Anal Test 7:295–303

    Article  Google Scholar 

  46. Zhou J, Du L, Zou L, Zou Y, Hu N, Wang P (2014) An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A—Au nanoparticle modified gold electrode. Sens Actuators B 197:220–227

    Article  CAS  Google Scholar 

  47. Yang G, Lai Y, **ao Z, Tang C, Deng Y (2018) Ultrasensitive electrochemical immunosensor of carcinoembryonic antigen based on gold-label silver-stain signal amplification. Chin Chem Lett 29:1857–1860

    Article  CAS  Google Scholar 

  48. Jozghorbani M, Fathi M, Kazemi SH, Alinejadian N (2021) Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Anal Biochem 613:114017

    Article  CAS  PubMed  Google Scholar 

  49. Faridbod F, Sanati AL (2019) Graphene quantum dots in electrochemical sensors/biosensors. Curr Anal Chem 15:103–123

    Article  CAS  Google Scholar 

  50. Kaushik A, Shah P, Vabbina PK, Jayant RD, Tiwari S, Vashist A, Yndart A, Nair M (2016) A label-free electrochemical immunosensor for beta-amyloid detection. Anal Methods 8:6115–6120

    Article  CAS  Google Scholar 

  51. Dokur E, Uruc S, Gorduk O, Sahin Y (2022) Ultrasensitive electrochemical detection of carcinoembryonic antigen with a label-free immunosensor using gold nanoparticle‐decorated Poly (pyrrole‐co‐3, 4‐ethylenedioxythiophene). ChemElectroChem. https://doi.org/10.1002/celc.202200121

    Article  Google Scholar 

  52. Akter R, Rhee CK, Rahman MA (2014) Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 54:351–357

    Article  CAS  PubMed  Google Scholar 

  53. Chen P, Hua X, Liu J, Liu H, **a F, Tian D, Zhou C (2019) A dual amplification electrochemical immunosensor based on HRP-Au@ Ag NPs for carcinoembryonic antigen detection. Anal Biochem 574:23–30

    Article  CAS  PubMed  Google Scholar 

  54. Jeong B, Akter R, Han OH, Rhee CK, Rahman MA (2013) Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal Chem 85:1784–1791

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Yang W-K, Fan M-Q, Liu A (2011) A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform. Anal Sci 27:727–731

    Article  CAS  PubMed  Google Scholar 

  56. Laboria N, Fragoso A, Kemmner W, Latta D, Nilsson O, Luz Botero M, Drese K, O’Sullivan CK (2010) Amperometric Immunosensor for carcinoembryonic antigen in colon cancer samples based on monolayers of dendritic bipodal scaffolds. Anal Chem 82:1712–1719

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Zhang Z, Zhang Y, Deng D, Luo L, Han B, Fan C (2016) Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing. Biosens Bioelectron 79:536–542

    Article  CAS  PubMed  Google Scholar 

  58. Xu T, Liu N, Yuan J, Ma Z (2015) Triple tumor markers assay based on carbon–gold nanocomposite. Biosens Bioelectron 70:161–166

    Article  CAS  PubMed  Google Scholar 

  59. Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z (2017) Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl Mater Interfaces 9:41188–41199

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Wang Y, Shen L, Yu J, Ge S, Yan M (2017) Electrochemiluminescence behavior of AgNCs and its application in immunosensors based on PANI/PPy-Ag dendrite-modified electrode. Analyst 142:2587–2594

    Article  CAS  PubMed  Google Scholar 

  61. Norouzi P, Gupta VK, Faridbod F, Pirali-Hamedani M, Larijani B, Ganjali MR (2011) Carcinoembryonic antigen admittance biosensor based on au and ZnO nanoparticles using FFT admittance voltammetry. Anal Chem 83:1564–1570

    Article  CAS  PubMed  Google Scholar 

  62. Liang H, Luo Y, Li Y, Song Y, Wang L (2022) An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen. Anal Chem 94:5352–5358

    Article  CAS  PubMed  Google Scholar 

  63. Santos AS, Durán N, Kubota LT (2005) Biosensor for H2O2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide. Electroanal: Int J Devot Fundam Pract Aspects Electroanal 17:1103–1111

    Article  CAS  Google Scholar 

  64. Szymanska B, Lukaszewski Z, Hermanowicz-Szamatowicz K, Gorodkiewicz E (2020) An immunosensor for the determination of carcinoembryonic antigen by surface plasmon resonance imaging. Anal Biochem 609:113964

    Article  CAS  PubMed  Google Scholar 

  65. Ganganboina AB, Doong R-A (2019) Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen. Sci Rep 9:7214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of this investigation by the University of Mohaghegh Ardabili, Ardabil, Iran.

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, methodology, investigation, validation, data curation, writing—original draft. MSM: conceptualization, resources, data curation. AA: conceptualization, methodology, investigation, formal analysis. MM: conceptualization, methodology, investigation, validation, data curation, writing— review and editing, supervision.

Corresponding authors

Correspondence to Ali Shamsazar or Majid Mahdavi.

Ethics declarations

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsazar, A., Moghaddam, M.S., Asadi, A. et al. Development and performance assessment of a multi-walled carbon nanotube/iron oxide nanocomposite-based electrochemical immunosensor for precise and ultrasensitive detection of carcinoembryonic antigen. J Appl Electrochem 54, 1713–1726 (2024). https://doi.org/10.1007/s10800-023-02063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02063-y

Keywords

Navigation