Log in

Electrochemical IFN-γ immunosensor based on a nanocomposite of gold nanorods and reduced graphene oxide

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Interferon-γ (IFN-γ) is a vital part of the immune system, and a critical biomarker determining the progression of several diseases, like tuberculosis, HIV, and multiple sclerosis. This work presents an electrochemical immunosensor for detecting IFN-γ based on an indium–tin oxide electrode modified with a nanocomposite of gold nanorods and reduced graphene oxide (AuNR-rGO). The antibodies are immobilized on the modified electrode. Subsequent addition of analyte proteins causes a drop in the peak current in the differential pulse voltammetry (DPV) since the proteins hinder electron transfer. The DPV peak current values are proportional to logarithmic IFN-γ concentrations in the dynamic range of 5–1000 pg/mL with a detection limit of 2.5 pg/mL. In addition, this immunosensor shows high specificity to IFN-γ in the presence of competent inflammatory proteins (IL-4 and TNF-α) in phosphate-buffered saline and human blood samples. Our results demonstrate the potential of AuNR-rGO nanocomposite as an effective electrode material for improved sensor performance, providing a simple, sensitive, and specific detection of IFN-γ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. https://doi.org/10.1189/jlb.0603252

    Article  PubMed  CAS  Google Scholar 

  2. Frucht DM, Fukao T, Bogdan C et al (2001) IFN-γ production by antigen-presenting cells: mechanisms emerge. Trends Immunol 22:556–560. https://doi.org/10.1016/S1471-4906(01)02005-1

    Article  PubMed  CAS  Google Scholar 

  3. Miller CHT, Maherb SG, Young HA (2009) Clinical use of interferon-γ. Ann NY Acad Sci 1182:69–79. https://doi.org/10.1111/j.1749-6632.2009.05069.x

    Article  PubMed  CAS  Google Scholar 

  4. Kak G, Raza M, Tiwari BK (2018) Interferon-gamma (IFN-γ): exploring its implications in infectious diseases. Biomol Concepts 9:64–79. https://doi.org/10.1515/bmc-2018-0007

    Article  PubMed  CAS  Google Scholar 

  5. Yerrapragada RM, Mampallil D (2022) Interferon-γ detection in point of care diagnostics: short review. Talanta 245:123428. https://doi.org/10.1016/J.TALANTA.2022.123428

    Article  Google Scholar 

  6. Uhuo OV, Waryo TT, Douman SF et al (2022) Bioanalytical methods encompassing label-free and labeled tuberculosis aptasensors: a review. Anal Chim Acta 1234:340326. https://doi.org/10.1016/J.ACA.2022.340326

    Article  PubMed  CAS  Google Scholar 

  7. Lee SH, Kwon JY, Kim SY et al (2017) Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-09767-0

    Article  CAS  Google Scholar 

  8. Kelchtermans H, Billiau A, Matthys P (2008) How interferon-γ keeps autoimmune diseases in check. Trends Immunol 29:479–486. https://doi.org/10.1016/J.IT.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  9. Wang S, Inci F, De Libero G et al (2013) Point-of-care assays for tuberculosis: role of nanotechnology. Microfluid Biotechnol Adv 31:438–449. https://doi.org/10.1016/j.biotechadv.2013.01.006

    Article  PubMed  Google Scholar 

  10. Huang HH, De Silva KKH, Kumara GRA, Yoshimura M (2018) Structural evolution of hydrothermally derived reduced graphene oxide. Sci Rep 8:2–10. https://doi.org/10.1038/s41598-018-25194-1

    Article  CAS  Google Scholar 

  11. Du J, Cheng HM (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077. https://doi.org/10.1002/MACP.201200029

    Article  CAS  Google Scholar 

  12. Parnianchi F, Nazari M, Maleki J, Mohebi M (2018) Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett 8:229–239. https://doi.org/10.1007/S40089-018-0253-3

    Article  CAS  Google Scholar 

  13. Abdala AA, Swaminat Han S, Singh KK et al (2015) Recent advances in graphene based gas sensors related papers elect ronics two-dimensional mat erials for sensing: graphene and beyond recent advances in graphene based gas sensors. Sens Actuators B 218:160–183. https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  14. Krishnan SK, Singh E, Singh P et al (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9:8778–8881. https://doi.org/10.1039/C8RA09577A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Darabdhara G, Das MR, Singh SP et al (2019) Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Adv. Colloid Interface Sci. 271:101991. https://doi.org/10.1016/j.cis.2019.101991

    Article  PubMed  CAS  Google Scholar 

  16. Chazalviel J-N, Allongue P (2010) On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J Am Chem Soc 133:762–764. https://doi.org/10.1021/JA109295X

    Article  Google Scholar 

  17. Alagiri M, Rameshkumar P, Pandikumar A (2017) Gold nanorod-based electrochemical sensing of small biomolecules: a review. Microchim Acta 184:3069–3092. https://doi.org/10.1007/S00604-017-2418-6/METRICS

    Article  CAS  Google Scholar 

  18. Zamani M, Pourmadadi M, Seyyed Ebrahimi SA et al (2022) A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. J Electroanal Chem 908:116116. https://doi.org/10.1016/J.JELECHEM.2022.116116

    Article  CAS  Google Scholar 

  19. Mehdipour G, Shabani Shayeh J, Omidi M et al (2022) An electrochemical aptasensor for detection of prostate-specific antigen using reduced graphene gold nanocomposite and Cu/carbon quantum dots. Biotechnol Appl Biochem 69:2102–2111. https://doi.org/10.1002/BAB.2271

    Article  PubMed  CAS  Google Scholar 

  20. Pourmadadi M, Shayeh JS, Arjmand S et al (2020) An electrochemical sandwich immunosensor of vascular endothelial growth factor based on reduced graphene oxide/gold nanoparticle composites. Microchem J 159:105476. https://doi.org/10.1016/J.MICROC.2020.105476

    Article  CAS  Google Scholar 

  21. Chen S, Xu L, Sheng K et al (2021) A label-free electrochemical immunosensor based on facet-controlled au nanorods/reduced graphene oxide composites for prostate specific antigen detection. Sens Actuators B Chem 336:129748. https://doi.org/10.1016/J.SNB.2021.129748

    Article  CAS  Google Scholar 

  22. Marlinda AR, Sagadevan S, Yusoff N et al (2020) Gold nanorods-coated reduced graphene oxide as a modified electrode for the electrochemical sensory detection of NADH. J Alloys Compd 847:156552. https://doi.org/10.1016/j.jallcom.2020.156552

    Article  CAS  Google Scholar 

  23. Park S, An J, Potts JR et al (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon NY 49:3019–3023. https://doi.org/10.1016/J.CARBON.2011.02.071

    Article  CAS  Google Scholar 

  24. Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882. https://doi.org/10.1002/SMLL.200500014

    Article  PubMed  CAS  Google Scholar 

  25. Mbalaha ZS, Edwards PR, Birch DJS, Chen Y (2019) Synthesis of small gold nanorods and their subsequent functionalization with hairpin single stranded DNA. ACS Omega 4:13740–13746. https://doi.org/10.1021/acsomega.9b01200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. https://doi.org/10.1021/cm020732l

    Article  CAS  Google Scholar 

  27. Magar HS, Hassan RYA, Mulchandani A (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21:6578. https://doi.org/10.3390/S21196578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang Y, Yan Y, Zhang B et al (2015) Fabrication of an interferon-gamma-based ITO detector for latent tuberculosis diagnosis with high stability and lower cost. J Solid State Electrochem 19:3111–3119. https://doi.org/10.1007/s10008-015-2936-2

    Article  CAS  Google Scholar 

  29. Zhu M, Tang Y, Wen Q et al (2016) Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold n. Microchim Acta 183:1739–1748. https://doi.org/10.1007/s00604-016-1804-9

    Article  CAS  Google Scholar 

  30. Kim HJ, Jang CH (2019) Liquid crystal-based aptasensor for the detection of interferon-Γ and its application in the diagnosis of tuberculosis using human blood. Sens Actuators B Chem 282:574–579. https://doi.org/10.1016/j.snb.2018.11.104

    Article  CAS  Google Scholar 

  31. Stigter ECA, De Jong GJ, Van Bennekom WP (2005) An improved coating for the isolation and quantitation of interferon-γ in spiked plasma using surface plasmon resonance (SPR). Biosens Bioelectron 21:474–482. https://doi.org/10.1016/j.bios.2004.11.008

    Article  PubMed  CAS  Google Scholar 

  32. Zhang H, Jiang B, **ang Y et al (2012) Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme. Analyst 137:1020–1023. https://doi.org/10.1039/c2an15962g

    Article  PubMed  CAS  Google Scholar 

  33. Xuan F, Luo X, Hsing IM (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 84:5216–5220. https://doi.org/10.1021/ac301033w

    Article  PubMed  CAS  Google Scholar 

  34. Huang H, Shi S, Li J et al (2015) Detection of interferon-gamma for latent tuberculosis diagnosis using an immunosensor based on CdS quantum dots coupled to magnetic beads as labels. Int J Electrochem Sci 10:2580–2593

    Article  CAS  Google Scholar 

  35. Wang Y, Mazurek GH, Alocilja EC (2016) Measurement of interferon gamma concentration using an electrochemical immunosensor. J Electrochem Soc 163:B140–B145. https://doi.org/10.1149/2.0271605jes

    Article  CAS  Google Scholar 

  36. Zhang Y, Zhang B, Ye X et al (2016) Electrochemical immunosensor for interferon-γ based on disposable ITO detector and HRP-antibody-conjugated nano gold as signal tag. Mater Sci Eng C 59:577–584. https://doi.org/10.1016/j.msec.2015.10.066

    Article  CAS  Google Scholar 

  37. Parate K, Rangnekar SV, **g D et al (2020) Aerosol-jet-printed graphene immunosensor for label-free cytokine monitoring in serum. ACS Appl Mater Interfaces 12:8592–8603. https://doi.org/10.1021/acsami.9b22183

    Article  PubMed  CAS  Google Scholar 

  38. Ruecha N, Shin K, Chailapakul O, Rodthongkum N (2019) Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens Actuators B Chem 279:298–304. https://doi.org/10.1016/j.snb.2018.10.024

    Article  CAS  Google Scholar 

  39. Kellar KL, Gehrke J, Weis SE et al (2011) Multiple cytokines are released when blood from patients with tuberculosis is stimulated with Mycobacterium tuberculosis antigens. PLoS ONE. https://doi.org/10.1371/journal.pone.0026545

    Article  PubMed  PubMed Central  Google Scholar 

  40. Colozza N, Caratelli V, Moscone D, Arduini F (2021) Origami paper-based electrochemical (bio)sensors: state of the art and perspective. Biosensors 11:328. https://doi.org/10.3390/BIOS11090328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge IISER Tirupati intramural funds. DM acknowledges Science and Engineering Research Board (India) grants CRG/2020/003117 for supporting this work. The authors acknowledge Dr. Sivakumar Vallabhapurapu of IISER Tirupati for kindly providing IL-4 and TNF-α samples and Dr. Suchi Goel of IISER Tirupati for human blood samples.

Author information

Authors and Affiliations

Authors

Contributions

MY and BF performed the experiments. DM and VP supervised the project. MY, DM, and VP wrote the manuscript.

Corresponding author

Correspondence to Dileep Mampallil.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 342.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerrapragada, M.R., Kunnambra, B.F., Pillai, V.K. et al. Electrochemical IFN-γ immunosensor based on a nanocomposite of gold nanorods and reduced graphene oxide. J Appl Electrochem 54, 127–135 (2024). https://doi.org/10.1007/s10800-023-01946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01946-4

Keywords

Navigation