Log in

An environmentally friendly, layer-by-layer assembled electrode for ultrafast electrochemical detection of nitrite in water

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The development of sensors for rapid nitrite detection in water is of great significance to human health and environmental protection. In this study, carboxylated cellulose nanocrystals were prepared by oxidizing microcrystalline cellulose with ammonium persulfate. Subsequently, a composite film was successfully prepared by depositing carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium chloride) onto a glass carbon electrode using the layer-by-layer assembly method. After electrodepositing poly(3,4-ethylenedioxythiophene), the resulting electrode was utilized as an electrochemical sensor for nitrite detection. The effect of the number of layers of the composite film on electrocatalytic performance towards nitrite was investigated. Under optimal conditions, the sensor exhibited an ultrafast response to nitrite within 0.5 s, which was better than that of most similar sensors reported. Additionally, it had a wide linear range of 0.5–3000 µM and a low detection limit of 0.26 µM. Furthermore, this sensor showed satisfactory recovery between 98.78 and 103.29% for nitrite in real water samples. Our study presents a significant approach towards the development of an environmentally friendly nitrite sensor with an ultrafast response.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahammad AJS, Pal PR, Shah SS, Islam T, Mahedi Hasan M, Qasem MAA, Odhikari N, Sarker S, Kim DM, Abdul Aziz M (2019) Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. J Electroanal Chem 832:368–379. https://doi.org/10.1016/j.jelechem.2018.11.034

    Article  CAS  Google Scholar 

  2. Keerthi M, Manavalan S, Chen S-M, Shen P-W (2019) A facile hydrothermal synthesis and electrochemical properties of manganese dioxide@graphitic carbon nitride nanocomposite toward highly sensitive detection of Nitrite. J Electrochem Soc 166:B1245–B1250. https://doi.org/10.1149/2.0251914jes

    Article  Google Scholar 

  3. Rao H, Liu Y, Zhong J, Zhang Z, Zhao X, Liu X, Jiang Y, Zou P, Wang X, Wang Y (2017) Gold nanoparticle/chitosan@N,S co-doped multiwalled carbon nanotubes sensor:fabrication, characterization, and electrochemical detection of catechol and nitrite. ACS Sustainable Chem Eng 5:10926–10939. https://doi.org/10.1021/acssuschemeng.7b02840

    Article  CAS  Google Scholar 

  4. Mao Y, Bao Y, Han DX, Zhao B (2018) Research progresson nitrite electrochemical sensor. Chin J Anal Chem 46:147–155. https://doi.org/10.1016/s1872-2040(17)61066-1

    Article  CAS  Google Scholar 

  5. Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:4563–4569. https://doi.org/10.1039/c1an15486a

    Article  CAS  PubMed  Google Scholar 

  6. Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive dtection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85:10008–10012. https://doi.org/10.1021/ac4031303

    Article  CAS  PubMed  Google Scholar 

  7. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2014) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113–1122. https://doi.org/10.1007/s00604-014-1436-x

    Article  CAS  Google Scholar 

  8. Zhang S, Li B, Sheng Q, Zheng J (2016) Electrochemical sensor for sensitive determination of nitrite based on the CuS–MWCNT nanocomposites. J Electroanal Chem 769:118–123. https://doi.org/10.1016/j.jelechem.2016.03.025

    Article  CAS  Google Scholar 

  9. Sheng Q, Liu D, Zheng J (2017) A nonenzymatic electrochemical nitrite sensor based on pt nanoparticles loaded Ni(OH)2/multi-walled carbon nanotubes nanocomposites. J Electroanal Chem 796:9–16. https://doi.org/10.1016/j.jelechem.2017.04.050

    Article  CAS  Google Scholar 

  10. Tran CTK, Tran HTT, Bui HTT, Dang TQ, Nguyen LQ (2017) Determination of low level nitrate/nitrite contamination using SERS-active Ag/ITO substrates coupled to a self-designed Raman spectroscopy system. J Sci Adv Mater Devices 2:172–177. https://doi.org/10.1016/j.jsamd.2017.05.002

    Article  Google Scholar 

  11. Altunay N, Gürkan R, Olgaç E (2017) Development of a new methodology for indirect determination of nitrite, nitrate, and total nitrite in the selected two groups of foods by spectrophotometry. Food Anal Methods 10:2194–2206. https://doi.org/10.1007/s12161-016-0789-7

    Article  Google Scholar 

  12. Jansen S, Sanggam Dera RT, Margareth Ruth MS, Nia Syofyasti M, Muchlisyam Yosy CES (2018) Analysis of nitrite and nitrate in the corned beef and smoked beef by using visible spectrophotometry method. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/205/1/012039

    Article  Google Scholar 

  13. Kalaycıoğlu Z, Erim FB (2015) Simultaneous determination of nitrate and nitrite in fish products with improved sensitivity by sample stacking-capillary electrophoresis. Food Anal Methods 9:706–711. https://doi.org/10.1007/s12161-015-0241-4

    Article  Google Scholar 

  14. Taus F, Pigaiani N, Bortolotti F, Mazzoleni G, Brevi M, Tagliaro F, Gottardo R (2021) Direct and specific analysis of nitrite and nitrate in biological and non-biological samples by capillary ion analysis for the rapid identification of fatal intoxications with sodium nitrite. Forensic Sci Int 325:110855. https://doi.org/10.1016/j.forsciint.2021.110855

    Article  CAS  PubMed  Google Scholar 

  15. Ren HH, Fan Y, Wang B, Yu LP (2018) Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and water. J Agric Food Chem 66:8851–8858. https://doi.org/10.1021/acs.jafc.8b01951

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Tong C (2020) Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury(II) in environmental water samples based on the Tb3+-modified carbon quantum Dot/3-aminophenylboronic acid hybrid. Anal Chem 92:8859–8866. https://doi.org/10.1021/acs.analchem.0c00455

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Moreno C, Perez IV, Urbano AM (2016) Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem 194:687–694. https://doi.org/10.1016/j.foodchem.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  18. Hao D, Liu Y, Gao S, Arandiyan H, Bai X, Kong Q, Wei W, Shen P, Ni B (2021) Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater Today 46:212–233. https://doi.org/10.1016/j.mattod.2021.01.029

    Article  CAS  Google Scholar 

  19. Hao D, Ren J, Wang Y, Arandiyan H, Garbrecht M, Bai X, Shon H, Wei W, Ni B (2021) A green synthesis of Ru modified g-C3N4 nanosheets for enhanced photocatalytic ammonia synthesis.  Energy Mater Adv 2021:9761263. https://doi.org/10.34133/2021/9761263

    Article  CAS  Google Scholar 

  20. Huang Y, Lin J, Duan Y, Yu C, Li L, Ding Y (2022) Preparation of carbon fiber composite modified by cobalt lanthanum oxides and its electrochemical simultaneous determination of amlodipine and acetaminophen. Adv Fiber Mater 4:1153–1163. https://doi.org/10.1007/s42765-022-00159-2

    Article  CAS  Google Scholar 

  21. Brenes R, Grieco M, Bojorge N, Pereira N (2021) Nanocellulose: production and processing for biomedical applications. ChemNanoMat 7:1259–1272. https://doi.org/10.1002/cnma.202100329

    Article  CAS  Google Scholar 

  22. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446. https://doi.org/10.1021/acs.chemmater.7b01170

    Article  CAS  Google Scholar 

  23. Teodoro KBR, Sanfelice RC, Migliorini FL, Pavinatto A, Facur MHM, Correa DS (2021) A review on the role and performance of cellulose nanomaterials in sensors. ACS Sens 6:2473–2496. https://doi.org/10.1021/acssensors.1c00473

    Article  CAS  PubMed  Google Scholar 

  24. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. https://doi.org/10.1002/adfm.200902104

    Article  CAS  Google Scholar 

  25. Qin D, Gao S, Wang L, Shen H, Yalikun N, Sukhrobov P, Wagberg T, Zhao Y, Mamat X, Hu G (2017) Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of cd(II) and pb(II). Microchim Acta 184:2759–2766. https://doi.org/10.1007/s00604-017-2260-x

    Article  CAS  Google Scholar 

  26. Durairaj V, Wester N, Etula J, Laurila T, Lehtonen J, Rojas OJ, Pahimanolis N, Koskinen J (2019) Multiwalled carbon nanotubes/nanofibrillar cellulose/nafion composite-modified tetrahedral amorphous carbon electrodes for selective dopamine detection. J Phys Chem C 123:24826–24836. https://doi.org/10.1021/acs.jpcc.9b05537

    Article  CAS  Google Scholar 

  27. Si Y, Park JW, Jung S, Hwang GS, Goh E, Lee HJ (2018) Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens Bioelectron 121:265–271. https://doi.org/10.1016/j.bios.2018.08.074

    Article  CAS  PubMed  Google Scholar 

  28. Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037. https://doi.org/10.1007/s00604-016-1842-3

    Article  CAS  Google Scholar 

  29. Yoshino TNaT (1986) Surface properties of electrochemically pretreated glassy carbon. Anal Chem 58:1037–1042. https://doi.org/10.1021/ac00297a012

    Article  Google Scholar 

  30. Oun AA, Rhim JW (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492. https://doi.org/10.1016/j.carbpol.2017.06.121

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Tang L, Lu Q, Wang S, Chen X, Huang B (2014) Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21:1611–1618. https://doi.org/10.1007/s10570-014-0236-0

    Article  CAS  Google Scholar 

  32. Liu Y, Liu L, Wang K, Zhang H, Yuan Y, Wei H, Wang X, Duan Y, Zhou L, Zhang J (2020) Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals. Carbohydr Polym 229:115572. https://doi.org/10.1016/j.carbpol.2019.115572

    Article  CAS  PubMed  Google Scholar 

  33. Oun AA, Rhim JW (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109. https://doi.org/10.1016/j.carbpol.2015.03.073

    Article  CAS  PubMed  Google Scholar 

  34. Gu J, Hu C, Zhong R, Tu D, Yun H, Zhang W, Leu SY (2017) Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydr Polym 167:70–78. https://doi.org/10.1016/j.carbpol.2017.02.110

    Article  CAS  PubMed  Google Scholar 

  35. Khanjanzadeh H, Park BD (2021) Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr Polym 251:117029. https://doi.org/10.1016/j.carbpol.2020.117029

    Article  CAS  PubMed  Google Scholar 

  36. Luo X, Killard AJ, Smyth MR (2007) Nanocomposite and nanoporous polyaniline conducting polymers exhibit enhanced catalysis of nitrite reduction. Chem Eur J 13:2138–2143. https://doi.org/10.1002/chem.200601248

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Z, **a Z, Liu C, Huang H, Ye W (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154. https://doi.org/10.1016/j.electacta.2017.09.185

    Article  CAS  Google Scholar 

  38. Zhao Z, Zhang J, Wang W, Sun Y, Li P, Hu J, Chen L, Gong W (2019) Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl Surf Sci 485:274–282. https://doi.org/10.1016/j.apsusc.2019.04.202

    Article  CAS  Google Scholar 

  39. Jeff ACC, Soderberg N, Aislinn Sirk HC, Viola Birss I (2006) Impact of porous electrode properties on the electrochemical transfer coefficient. J Phys Chem B 110:10401–10410. https://doi.org/10.1021/jp060372f

    Article  CAS  Google Scholar 

  40. Islam T, Hasan MM, Akter SS, Alharthi NH, Karim MR, Aziz MA, Hossain MD, Ahammad AJS (2019) Fabrication of Ni–Co-based heterometallo-supramolecular polymer films and the study of electron transfer kinetics for the nonenzymatic electrochemical detection of nitrite. ACS Appl Polym Mater 2:273–284. https://doi.org/10.1021/acsapm.9b00797

    Article  CAS  Google Scholar 

  41. Li S-S, Hu Y-Y, Wang A-J, Weng X, Chen J-R, Feng J-J (2015) Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens Actuat B Chem 208:468–474. https://doi.org/10.1016/j.snb.2014.11.056

    Article  CAS  Google Scholar 

  42. Zhe T, Li M, Li F, Li R, Bai F, Bu T, Jia P, Wang L (2022) Integrating electrochemical sensor based on MoO3/Co3O4 heterostructure for highly sensitive sensing of nitrite in sausages and water. Food Chem 367:130666. https://doi.org/10.1016/j.foodchem.2021.130666

    Article  CAS  PubMed  Google Scholar 

  43. Chen H, Yang T, Liu F, Li W (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuat B Chem 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  44. Chen G, Zheng J (2021) Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide–polyaniline–Au nanoparticles nanocomposite. Microchem J 164:106034. https://doi.org/10.1016/j.microc.2021.106034

    Article  CAS  Google Scholar 

  45. Chen Y, Waterhouse GIN, Qiao X, Sun Y, Xu Z (2022) Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb2C@MWCNTs for signal amplification. Food Chem 372:131356. https://doi.org/10.1016/j.foodchem.2021.131356

    Article  CAS  PubMed  Google Scholar 

  46. Cheng Z, Song H, Zhang X, Cheng X, Xu Y, Zhao H, Gao S, Huo L (2022) Enhanced non-enzyme nitrite electrochemical sensing property based on stir bar-shaped ZnO nanorods decorated with nitrogen-doped reduced graphene oxide. Sens Actuat B Chem. https://doi.org/10.1016/j.snb.2021.131313

    Article  Google Scholar 

  47. Zhang J, Chen Z, Wu H, Wu F, He C, Wang B, Wu Y, Ren Z (2016) An electrochemical bifunctional sensor for the detection of nitrite and hydrogen peroxide based on layer-by-layer multilayer films of cationic phthalocyanine cobalt(II) and carbon nanotubes. J Mater Chem B 4:1310–1317. https://doi.org/10.1039/c5tb01995h

    Article  CAS  PubMed  Google Scholar 

  48. Tian F, Li H, Li M, Li C, Lei Y, Yang B (2017) Synthesis of one-dimensional poly(3,4-ethylenedioxythiophene)-graphene composites for the simultaneous detection of hydroquinone, catechol, resorcinol, and nitrite. Synth Met 226:148–156. https://doi.org/10.1016/j.synthmet.2017.02.016

    Article  CAS  Google Scholar 

  49. Xu F, Liu Y, Ding G, Deng M, Chen S, Wang L (2014) Three dimensional macroporous poly(3,4-ethylenedioxythiophene) structure: electrodeposited preparation and sensor application. Electrochim Acta 150:223–231. https://doi.org/10.1016/j.electacta.2014.10.114

    Article  CAS  Google Scholar 

  50. Kou H, Jia L, Wang C, Ye W (2012) A Nitrite biosensor based on the direct electron transfer of hemoglobin immobilized on carboxyl-functionalized multiwalled carbon nanotubes/polyimide composite. Electroanalysis 24:1799–1803. https://doi.org/10.1002/elan.201200275

    Article  CAS  Google Scholar 

  51. Hui N, Chai F, Lin P, Song Z, Sun X, Li Y, Niu S, Luo X (2016) Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim Acta 199:234–241. https://doi.org/10.1016/j.electacta.2016.03.115

    Article  CAS  Google Scholar 

  52. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727. https://doi.org/10.1007/s00604-017-2180-9

    Article  CAS  Google Scholar 

  53. Meng A, Hong X, Zhang Y, Li S, Sheng L, Li Z (2022) Curly fish scales-like Ni2.5Mo6S6.7 electrodeposited on PEDOT-rGO with uneven surface as ultrafast response electrode for electrocatalytic glucose, nitrite and hydrogen peroxide. J Colloid Interf Sci 608:131–141. https://doi.org/10.1016/j.jcis.2021.09.172

    Article  CAS  Google Scholar 

  54. Diouf A, El Bari N, Bouchikhi B (2020) A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 209:120577. https://doi.org/10.1016/j.talanta.2019.120577

    Article  CAS  PubMed  Google Scholar 

  55. Xu G, Zhang M, Yu X (2018) Electrochemical Detection of nitrite in food based on poly(3,4-ethylenedioxythiophene) doped with Fe3O4 nanoparticles loaded carboxylated nanocrystalline cellulose. Acta Chim slov 65:502–511. https://doi.org/10.17344/acsi.2017.3974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors were very grateful to Foundation of Guilin University of Technology (Grant No. GUTQDJJ2017108) for the financial supports.

Author information

Authors and Affiliations

Authors

Contributions

XD wrote the original draft and performed experiments. YZ and ML analyzed the data and prepared all the figures. XT collected the literature and ZC guided the whole project, reviewed the manuscript and provided financial support.

Corresponding author

Correspondence to Zhenbo Cao.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20490.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Zhang, Y., Liu, M. et al. An environmentally friendly, layer-by-layer assembled electrode for ultrafast electrochemical detection of nitrite in water. J Appl Electrochem 53, 2443–2455 (2023). https://doi.org/10.1007/s10800-023-01922-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01922-y

Keywords

Navigation