Log in

A new method for optimising polarisation point in electrochemical impedance based measurements

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we show a new procedure to obtain an optimum DC polarisation potential that allows achieving the maximum possible sensitivity for analyte determination, when electrochemical techniques are used. This is valid whether purely DC or AC potentials are used for system polarisation. In addition, the optimum potential is lower than the ones generally used by the classical methods, avoiding redox-active interferents and rapid degradation of the working electrode. In our case, we obtain a reduction of 16% of the DC applied potential and an increase among 3 and 5 times in the sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. TrAC, Trends Anal Chem 27:604–611. https://doi.org/10.1016/j.trac.2008.03.012

    Article  CAS  Google Scholar 

  2. Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229. https://doi.org/10.1146/annurev.anchem.012809.102211

    Article  CAS  Google Scholar 

  3. Sharafeldin M, Bishop GW, Bhakta S, El-Sawy A, Suib SL, Rusling JF (2017) Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosens Bioelectron 91:359–366. https://doi.org/10.1016/j.bios.2016.12.052

    Article  CAS  PubMed  Google Scholar 

  4. Stefano JS, Rocha DP, Dornellas RM, Narciso LC, Krzyzaniak SR, Mello PA, Munoz RA (2017) Highly sensitive amperometric detection of drugs and antioxidants on non-functionalized multi-walled carbon nanotubes: effect of metallic impurities? Electrochim Acta 240:80–89. https://doi.org/10.1016/j.electacta.2017.04.050

    Article  CAS  Google Scholar 

  5. Ostojić J, Herenda S, Bešić Z, Miloš M, Galić B (2017) Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules 22:1120–1128. https://doi.org/10.3390/molecules22071120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843. https://doi.org/10.1021/ac051559q

    Article  CAS  PubMed  Google Scholar 

  7. Martinez CCM, Treo EF, Madrid RE, Felice CC (2010) Evaluation of chrono-impedance technique as transduction method for a carbon paste/glucose oxidase (CP/GOx) based glucose biosensor. Biosens Bioelectron 26:1239–1244. https://doi.org/10.1016/j.bios.2010.06.033

    Article  CAS  Google Scholar 

  8. Martinez CCM, Treo EF, Madrid RE, Felice CC (2011) Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor. Biosens Bioelectron 29:200–203. https://doi.org/10.1016/j.bios.2011.08.018

    Article  CAS  Google Scholar 

  9. Wang J, Luck LA, Suni II (2007) Immobilization of the glucose-galactose receptor protein onto a Au electrode through a genetically engineered cysteine residue. Electrochem Solid-State Lett 10:J33–J36. https://doi.org/10.1149/1.2404021

    Article  CAS  Google Scholar 

  10. Radhakrishnan R, Suni II, Bever CS, Hammock BD (2014) Impedance biosensors: applications to sustainability and remaining technical challenges. ACS Sustain Chem Eng 2:1649–1655. https://doi.org/10.1021/sc500106y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elshafey R, Radi AE (2018) Electrochemical impedance sensor for herbicide alachlor based on imprinted polymer receptor. J Electroanal Chem 813:171–177. https://doi.org/10.1016/j.jelechem.2018.02.036

    Article  CAS  Google Scholar 

  12. N. A. Batrisya Ismail, F. Abd-Wahab, W. W. Amani Wan Salim (2018) Cyclic voltammetry and electrochemical impedance spectroscopy of partially reduced graphene oxide—PEDOT:PSS Transducer for Biochemical Sensing. In: 2018 IEEE-EMBS conference on biomedical engineering and sciences (IECBES), Sarawak, Malaysia, pp 330–335. https://doi.org/10.1109/IECBES.2018.8626618

  13. Park J, Lee W, Kim I, Kim M, Jo S, Kim W, Park H, Lee G, Choi W, Yoon DS, Park J (2019) Ultrasensitive detection of fibrinogen using erythrocyte membrane draped electrochemical impedance biosensor. Sens Actuators B Chem 293:296–303. https://doi.org/10.1016/j.snb.2019.05.016

    Article  CAS  Google Scholar 

  14. Narakathu BB, Atashbar MZ, Bejcek BE (2010) Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors. Biosens Bioelectron 26:923–928. https://doi.org/10.1016/j.bios.2010.06.051

    Article  CAS  PubMed  Google Scholar 

  15. Madrid RE, Treo EF, Herrera MC, Mayorga Martinez CC (2010) Handbook of physics in medicine and biology. Robert Splinter, Boca Raton

    Google Scholar 

  16. Ruiz GA, Felice CJ (2015) Electrochemical-fractal model versus randles model: a discussion about diffusion process. Int J Electrochem Sci 10:8484–8496

    Article  CAS  Google Scholar 

  17. Wiese H, Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1986) Instrumental methods in electrochemistry. Ber Bunsenges Phys Chem 90:559–559. https://doi.org/10.1002/bbpc.19860900614

    Article  Google Scholar 

  18. Nicholson RS (1966) Semiempirical procedure for measuring with stationary electrode polarography rates of chemical reactions involving the product of electron transfer. Anal Chem 38:1406–1406. https://doi.org/10.1021/ac60242a030

    Article  CAS  Google Scholar 

  19. Ruiz GA, Felice CJ (2021) Low error Kramers-Kronig estimations using symmetric extrapolation method. J Electr Bioimp 12:147–152. https://doi.org/10.2478/joeb-2021-0017

    Article  CAS  Google Scholar 

  20. Sevcik A (1948) Oscillographic polarography with periodical triangular voltage. Collect Czech Chem Commun 13:349–377. https://doi.org/10.1135/cccc19480349

    Article  CAS  Google Scholar 

  21. Delahay P (1954) New instrumental methods in electrochemistry. Interscience Publishers Inc., New York

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (PICT 2565 2016), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP CONICET 112-20150100842), and Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), as well as by Institutional funds from Instituto Superior de Investigaciones Biológicas (INSIBIO).

Author information

Authors and Affiliations

Authors

Contributions

GAR and CJF made the conceptualization, methodology, data curation, writing and supervision. LS: performed experiments and validation. PN,MZ,CG: made data validation and writing RM: Only validation

Corresponding author

Correspondence to G. A. Ruiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felice, C.J., Ruiz, G.A., Saad, L. et al. A new method for optimising polarisation point in electrochemical impedance based measurements. J Appl Electrochem 53, 1787–1793 (2023). https://doi.org/10.1007/s10800-023-01879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01879-y

Keywords

Navigation