Log in

A novel spherical-ordered macroporous CuO nanocatalyst for the electrochemical reduction of carbon dioxide

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic reduction of CO2 is a promising research direction in resource utilization and sustainable energy development. However, there is still a lack of research on efficient selective catalysts. A spherical-ordered macroporous CuO (SOMa-CuO) nanocatalyst was developed in this work. SBA-15 with a mesoporous structure was prepared by a hydrothermal synthesis and loaded with Cu(NO3)2. After the Cu(NO3)2 was decomposed at a high temperature and the SBA-15 template was removed, a SOMa-CuO nanocatalyst was obtained and loaded on a copper foam electrode. The SOMa-CuO nanocatalyst has a large roughness coefficient, large pore size, large electrochemical specific surface area and excellent electrical conductivity; thus, it demonstrates excellent electrochemical performance. The SOMa-CuO nanocatalyst has a high current density of 52 mA·cm−2 at 0.9 V, a high roughness coefficient of 13.06 mF and a long-term stability in 0.1 mol/L KHCO3. Therefore, the excellent properties of the SOMa-CuO nanocatalyst contribute to the further development of efficient electrocatalytic reduction materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM (2014) Increasing CO 2 threatens human nutrition. Nature 510(7503):139–342

    Article  CAS  Google Scholar 

  2. Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406(6797):695–699

    Article  CAS  Google Scholar 

  3. Schimel D, Stephens BB, Fisher JB (2015) Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA 112(2):436–441

    Article  CAS  Google Scholar 

  4. Lee ZH, Sethupathi S, Lee KT, Bhatia S, Mohamed AR (2013) An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renew Sust Energ Rev 28:71–81

    Article  CAS  Google Scholar 

  5. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling off carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498

    Article  CAS  Google Scholar 

  6. Centi G, Perathoner S, Su DS (2014) Nanocarbons: opening new possibilities for nano-engineered novel catalysts and catalytic electrodes. Catal Surv Asia 18(4):149–163

    Article  CAS  Google Scholar 

  7. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103(43):15729–15735

    Article  CAS  Google Scholar 

  8. Fan LS, Zeng L, Wang WL, Luo SW (2012) Chemical loo** processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity. Energy Environ Sci 5(6):7254–7280

    Article  CAS  Google Scholar 

  9. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Muller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5(6):7281–7305

    Article  CAS  Google Scholar 

  10. Clark EL, Hahn C, Jaramillo TF, Bell AT (2017) Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc 139(44):15848–15857

    Article  CAS  Google Scholar 

  11. Rosen BA, Salehi-Kho** A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334(6056):643–644

    Article  CAS  Google Scholar 

  12. Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458

    Article  CAS  Google Scholar 

  13. Song CS (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32

    Article  CAS  Google Scholar 

  14. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2(1):19–28

    Article  CAS  Google Scholar 

  15. Costentin C, Robert M, Saveant JM (2013) Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev 42(6):2423–2436

    Article  CAS  Google Scholar 

  16. Jones JP, Prakash GKS, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem 54(10):1451–1466

    Article  CAS  Google Scholar 

  17. Lim RJ, **e MS, Sk MA, Lee JM, Fisher A, Wang X, Lim KH (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180

    Article  CAS  Google Scholar 

  18. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113

    Article  CAS  Google Scholar 

  19. Reske R, Mistry H, Behafarid F, Roldan Cuenya B, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136(19):6978–6986

    Article  CAS  Google Scholar 

  20. Zhang JT, Zhao ZH, **a ZH, Dai LM (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10(5):444–452

    Article  CAS  Google Scholar 

  21. Roduner E (2014) Understanding catalysis. Chem Soc Rev 43(24):8226–8239

    Article  CAS  Google Scholar 

  22. Du DW, Lan R, Humphreys J, Tao SW (2017) Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J Appl Electrochem 47(6):661–678

    Article  CAS  Google Scholar 

  23. Schneider J, Jia HF, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41(6):2036–2051

    Article  CAS  Google Scholar 

  24. Peterson AA, Norskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3(2):251–258

    Article  CAS  Google Scholar 

  25. Ganesh I (2014) Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sust Energ Rev 31:221–257

    Article  CAS  Google Scholar 

  26. Maina JW, Pozo-Gonzalo C, Kong LX, Schutz J, Hill M, Dumee LF (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horizons 4(3):345–361

    Article  CAS  Google Scholar 

  27. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234

    Article  CAS  Google Scholar 

  28. Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456

    Article  CAS  Google Scholar 

  29. Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F (2015) Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal 5(8):4586–4591

    Article  CAS  Google Scholar 

  30. Hahn C, Hatsukade T, Kim YG, Vailionis A, Baricuatro JH, Higgins DC, Nitopi SA, Soriaga MP, Jaramillo TF (2017) Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc Natl Acad Sci USA 114(23):5918–5923

    Article  CAS  Google Scholar 

  31. Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14(1):76–81

    Article  CAS  Google Scholar 

  32. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JGG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:6

    Google Scholar 

  33. Luo JT, Zang GL, Hu C (2020) An efficient 3D ordered mesoporous Cu sphere array electrocatalyst for carbon dioxide electrochemical reduction. J Mater Sci Technol 15(55):95–106

    Article  Google Scholar 

  34. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050–7059

    Article  CAS  Google Scholar 

  35. Yang KD, Ko WR, Lee JH, Kim SJ, Lee H, Lee MH, Nam KT (2017) Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew Chem Int Ed 56(3):796–800

    Article  CAS  Google Scholar 

  36. Guo X, Zhang YX, Deng C, Li XY, Xue YF, Yan YM, Sun KN (2015) Composition dependent activity of Cu-Pt nanocrystals for electrochemical reduction of CO2. Chem Commun 51(7):1345–1348

    Article  CAS  Google Scholar 

  37. Tan, H. B.; Li, Y. Q.; Kim, J.; Takei, T.; Wang, Z. L.; Xu, X. T.; Wang, J.; Bando, Y.; Kang, Y. M.; Tang, J.; Yamauchi, Y., Sub-50 nm Iron-Nitrogen-Doped Hollow Carbon Sphere-Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Adv. Sci. 2018, 5, (7), 9.

Download references

Acknowledgements

This work was supported by the NSFC [Grant Number 21607113]; the Natural Science Foundation of Tian** City [Grant Number 17JCQNJC07700]; and the National Key Research and Development Program-China [Grant Number 2017YFE0127200].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Long Zang.

Ethics declarations

Conflict of interest

The authors declares that there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zang, GL., Luo, JT. et al. A novel spherical-ordered macroporous CuO nanocatalyst for the electrochemical reduction of carbon dioxide. J Appl Electrochem 51, 847–859 (2021). https://doi.org/10.1007/s10800-021-01548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01548-y

Keywords

Navigation