Log in

Control of composition and size for Pd–Ni alloy nanowires electrodeposited on highly oriented pyrolytic graphite

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In order to fabricate effective Pd–Ni alloy nanowire arrays with given compositions and size, the process of nucleation and growth and the dependence of alloy composition on deposition potential were investigated. The results reveal that the compositions and sizes of Pd–Ni alloy nanowires can be controlled within a desired range through adjusting suitable nucleation and growth potentials as well as the time. The Ni content in the alloy nanowires was found to vary from 6 to 28% when the deposition potential was changed from −0.3 to −1.9 V. A growth potential of −0.35 to − 0.50 V was applied to fabricate Pd–Ni alloy nanowires with 8–15% Ni content. Continuous and parallel nanowire arrays can be successfully fabricated when nucleation is performed at a potential of −1.2 V for 50 ms with further growth at −0.45 V for 800 s. Pd–Ni crystal phases exist in the alloy structure forms of 〈111〉, 〈200〉, 〈220〉, 〈311〉. The nanowires have an average diameter of 150 nm and a length of 100–450 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HOPG:

Highly oriented pyrolytic graphite

SED:

Step edge decoration

ESED:

Electrochemical step-edge decoration

AAO:

Anodic aluminum oxide

SEM:

Scanning electron microscope

EDX:

Energy-dispersive X-ray

XRD:

X-ray diffraction

SCE:

Saturated calomel electrode

CV:

Cyclic voltammogram

References

  1. Roman LS, Berggren M, Inganas O (1999) Appl Phys Lett 75:3557

    Article  CAS  Google Scholar 

  2. **a Y, Yang P, Sun Y, Wu Y et al (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  3. Li C, Zhang D, Liu X et al (2003) Appl Phys Lett 82:645

    Article  CAS  Google Scholar 

  4. Walter EC, Murray BJ, Favier F et al (2002) J Phys Chem B 106:11407

    Article  CAS  Google Scholar 

  5. Zach MP, Ng KH, Penner RM (2000) Science 290:2120

    Article  CAS  Google Scholar 

  6. Martin CR (1996) Chem Mater 8:1739

    Article  CAS  Google Scholar 

  7. Faver F, Walter E, Zach M et al (2001) Science 293:2227

    Article  Google Scholar 

  8. Menke EJ, Li Q, Penner RM (2004) Nano Lett 4:2009

    Article  CAS  Google Scholar 

  9. Li Q, Olson JB, Penner RM (2004) Chem Mater 16:3402

    Article  CAS  Google Scholar 

  10. Jung T, Schlittler R, Gimzewski JK et al (1995) Appl Phys A 61:467

    Article  Google Scholar 

  11. Gambardella P, Blanc M, Brune H et al (2000) Appl Phys B 61:2254

    CAS  Google Scholar 

  12. Dekoster J, Degroote B, Pattyn H et al (1999) Phys Rev Lett 75:938

    CAS  Google Scholar 

  13. Morin S, Lachenwitzer A, Magnussen OM et al (1999) Phys Rev Lett 83:5066

    Article  CAS  Google Scholar 

  14. Roder H, Hahn E, Brtune H et al (1993) Nature 366:141

    Article  Google Scholar 

  15. Mukhopadhyay I, Freyland W (2003) Langmuir 19:1951

    Article  CAS  Google Scholar 

  16. Francis GM, Kuipers L, Cleaver JRA et al (1996) J Appl Phys 79:2942

    Article  CAS  Google Scholar 

  17. Walter EC, Zach MP, Favier F et al (2003) Chemphyschem 4:131

    Article  CAS  Google Scholar 

  18. Thompson MA, Menke EJ, Martens CC et al (2006) J Phys Chem B 110:36

    Article  CAS  Google Scholar 

  19. Guo Y, Qin DH et al (2003) Appl Surf Sci 218:107

    Article  Google Scholar 

  20. Hughes RC, Schubert WK (1992) J Appl Phys 71:542

    Article  CAS  Google Scholar 

  21. Christofieds C, Mandelis A (1990) J Appl Phys 68:R1

    Article  Google Scholar 

  22. Scharnagl K, Eriksson M, Karthigeyan A et al (2001) Sens Actuators B 78:138

    Article  Google Scholar 

  23. **ao YK, Yuan J, Hu BN et al (2004) J Hunan Univ 31:5

    Google Scholar 

  24. Yuan J, **ao YK, Yu G et al (2005) Acta Phys Chem Sin 21:602

    CAS  Google Scholar 

  25. **ao YK, Yu G, Yuan J et al (2006) Electrochim Acta 51:4218

    Article  CAS  Google Scholar 

  26. Yuan J, **ao YK, Yu G et al (2004) Electroplat Pollut Control 24:14

    CAS  Google Scholar 

  27. Penner RM (2002) J Phys Chem B 106:3339

    Article  CAS  Google Scholar 

  28. Zach MP, Inazu K, Ng KH et al (2002) Chem Mater 14:3206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 20373015) and Hunan Education Office (Grant No. 04C033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, W., Yu, G., Ouyang, Y. et al. Control of composition and size for Pd–Ni alloy nanowires electrodeposited on highly oriented pyrolytic graphite. J Appl Electrochem 38, 1727–1734 (2008). https://doi.org/10.1007/s10800-008-9624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9624-1

Keywords

Navigation