Log in

Copper dissolution in the presence of a binary 2D-compound: CuI on Cu(100)

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Exposing a Cu(100) electrode surface to an acidic and iodide containing electrolyte (5 mM H2SO4/1 mM KI) leads to the formation of an electro-compressible/electro-decompressible c(p × 2)-I adsorbate layer at potentials close to the onset of the copper dissolution reaction. An increase of mobile CuI monomers on-top of the iodide modified electrode surface causes the local CuI solubility product to be exceeded thereby giving rise to the nucleation and growth of a laterally well ordered 2D-CuI film at potentials below 3D-CuIbulk phase formation. Step edges serve as sources for the consumption of copper material upon compound formation leading to accelerated copper dissolution at the step edges. The 2D-CuI film exhibits symmetry properties and nearest neighbor spacings that are closely related to the (111) lattice of the crystalline CuIbulk phase. Intriguingly, the 2D-CuI film on Cu(100) does not act as an efficient passive layer. Copper dissolution proceeds at slightly higher potentials even in the presence of this binary 2D-compound via an inverse step flow mechanism. Further dissolution causes the nucleation and growth of 3D-CuI clusters on-top of the 2D-CuI film. This several nanometer thick 3D-CuIbulk phase passivates the electrode against further dissolution. Characteristically, the formation/dissolution of the 3D-CuIbulk phase reveals a significantly larger potential hysteresis of about ΔE = 320 mV while the appearance/disappearance of the 2D-CuI film is reversible with a potential hysteresis of only ΔE = 20 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andriacos P.C., Uzoh C., Ducovic J.O., Horcans J., Deligianni H., (1998) IBM J. Res. Dev. 42: 567

    Article  Google Scholar 

  2. Arnaud L., Tartavel G., Berger T., Mariolle D., Gobil Y., Touet I., (2000) Microelectron. Reliab. 40: 1295

    Article  Google Scholar 

  3. Vogt M.R., Polewska W., Magnussen O.M., Behm R.J., (1997) J. Electrochem. Soc. 144: L113

    Article  CAS  Google Scholar 

  4. Polewska W., Vogt M.R., Magnussen O.M., Behm R.J., (1999) J. Phys. Chem. B 103: 10440

    Article  CAS  Google Scholar 

  5. Scherer J., Vogt M.R., Magnussen O.M., Behm R.J., (1997) Langmuir 13(26): 7045

    Article  CAS  Google Scholar 

  6. Szocs E., Vastag G., Shaban A., Kalman E., (2005) Corr. Sci. 47: 893

    Article  CAS  Google Scholar 

  7. Ikemiya N., Kubo T., Hara S., (1995) Surf. Sci. 323:81

    Article  CAS  Google Scholar 

  8. Maurice V., Strehblow H.-H., Marcus P., (1999) J. Electrochem. Soc. 146: 524

    Article  CAS  Google Scholar 

  9. Maurice V., Strehblow H.-H., Marcus P., (2000) Surf. Sci. 458: 185

    Article  CAS  Google Scholar 

  10. Strehblow H.-H., Maurice V., Marcus P., (2001) Electrochim. Acta 46: 3755

    Article  CAS  Google Scholar 

  11. Suggs D.W., Bard A.J., (1994) J. Am. Chem. Soc. 116: 10725

    Article  CAS  Google Scholar 

  12. Suggs D.W., Bard A.J., (1995) J. Phys. Chem. 99: 8349

    Article  CAS  Google Scholar 

  13. Vogt M.R., Lachenwitzer A., Magnussen O.M., Behm R.J., (1998) Surf. Sci. 399:49

    Article  CAS  Google Scholar 

  14. Magnussen O.M., Vogt M.R., (2000) Phys. Rev. Lett. 85: 357

    Article  CAS  Google Scholar 

  15. Magnussen O.M., Zitzler L., Gleich B., Vogt M.R., Behm R.J., (2001) Electrochim. Acta 46: 3725

    Article  CAS  Google Scholar 

  16. Magnussen O.M., (2002) Chem. Rev. 102: 679

    Article  CAS  Google Scholar 

  17. Broekmann P., Anastasescu M., Spaenig A., Lisowski W., Wandelt K., (2001) J. Electroanal. Chem. 500: 241

    Article  CAS  Google Scholar 

  18. Kunze J., Maurice V., Klein L.H., Strehblow H.-H., Marcus P., (2003) J. Electroanal. Chem. 554–555: 113

    Article  CAS  Google Scholar 

  19. Kunze J., Maurice V., Klein L.H., Strehblow H.-H., Marcus P., (2004) Corr. Sci. 46: 245

    Article  CAS  Google Scholar 

  20. Wilms M., Kruft M., Bermes G., Wandelt K., (1999) Rev. Sci. Instr. 70(7): 3641

    Article  CAS  Google Scholar 

  21. Broekmann P., Spaenig A., Hommes A., Wandelt K., (2002) Surf. Sci. 517(1–3): 123

    Article  CAS  Google Scholar 

  22. P. Broekmann, A. Spaenig, A. Hommes and K. Wandelt (to be published)

  23. Inukai J., Osawa Y., Itaya K., (1998) J. Phys. Chem. B. 102: 10034

    Article  CAS  Google Scholar 

  24. Hommes A., Spaenig A., Broekmann P., Wandelt K., (2003) Surf. Sci. 547:239

    Article  CAS  Google Scholar 

  25. P. Broekmann, S. Huemann, H. Zajonz, R. Hunger and K. Wandelt (to be published)

  26. Andryushechkin B.V., Eltsov K.N., Shevlyuga V.M., Bardi U., Cortigiani B., (2002) Surf. Sci. 497: 59

    Article  CAS  Google Scholar 

  27. Andryushechkin B.V., Eltsov K.N., Shevlyuga V.M., (2004) Surf. Sci. 566–568: 203

    Article  CAS  Google Scholar 

  28. Mattson E., Bockris J.O., (1959) Trans. Faraday. Soc. 55: 1586

    Article  Google Scholar 

  29. Bertocci U., (1966) Electrochim. Acta 11: 1261

    Article  CAS  Google Scholar 

  30. Bertocci U., Turner D.R., (1974) In: Bard A.J. (eds) Encyclopedia of Electrochemistry of the Elements, Vol III. Marcel Dekker, New York, pp. 383

    Google Scholar 

  31. Wong D.Y., Coller B.A.W., MacFarlane D.R., (1993) Electrochim. Acta 38: 2121

    Article  CAS  Google Scholar 

  32. De Agostini A., Schmidt E., Lorenz W.J., (1989) Electrochim. Acta 34: 1243

    Article  Google Scholar 

  33. Irish D.E., Stolberg L., Shoesmith D.W., (1985) Surf. Sci. 158: 238

    Article  CAS  Google Scholar 

  34. Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, deGruyter (1995)

  35. Dobelhofer K., Wasle S., Soares D.M., Weil K.G., Weinberg G., Ertl G., (2003) Z. Phys. Chem. 217: 479

    Google Scholar 

  36. Broekmann P., Wilms M., Kruft M., Stuhlmann C., Wandelt K., (1999) J. Electroanal. Chem. 467: 307

    Article  CAS  Google Scholar 

  37. Giesen M., Baier S., (2001) J. Phys.: Cond. Matter. 13:5009

    Article  CAS  Google Scholar 

  38. Giesen M., (2001) Prog. Surf. Sci. 68: 1

    Article  CAS  Google Scholar 

  39. S. Ye and K. Uosaki. in A.J. Bard and M. Stratmann (eds), Encyclopedia of Electrochemistry, Volume 1: Thermodynamics and Electrified Interfaces (Wiley-VCH, 2001)

  40. Gregory B.W., Stickney J.L., (1991) Electroanal. Chem. 300: 543

    Article  CAS  Google Scholar 

  41. J.L. Stickney, T.L. Wade, B.H. Flowers, R. Vaidyanathan and U. Happek. in A.J. Bard and M. Stratmann (eds), Encyclopedia of Electrochemistry Volume 1: Thermodynamics and Electrified Interfaces. (Wiley-VCH, 2001)

  42. Adzic R.R., Wang J.X., (1998) J. Phys. Chem. B 102: 6307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Broekmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broekmann, P., Hai, N.T.M. & Wandelt, K. Copper dissolution in the presence of a binary 2D-compound: CuI on Cu(100). J Appl Electrochem 36, 1241–1252 (2006). https://doi.org/10.1007/s10800-006-9183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9183-2

Keywords

Navigation