Log in

On a Particle Confined to the Squared Cotangent Potential in the Global Monopole Spacetime

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the confinement of a quantum particle to the squared cotangent potential in the background of global monopole spacetime. By dealing with s-states, we obtain the energy levels from the exact solutions to the Schrödinger equation. Then, we show that the topology of the global monopole spacetime influences the energy levels. Further, we show that there is a non-null revival time with regard to the squared cotangent potential and how it is influenced by the global monopole topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)

    Article  MathSciNet  Google Scholar 

  2. Avishai, Y., Hatsugai, Y., Kohmoto, M.: Phys. Rev. B 47, 9501 (1993)

    Article  Google Scholar 

  3. Tan, W.-C., Inkson, J.C.: Phys. Rev. B 60, 5626 (1999)

    Article  Google Scholar 

  4. Tan, W.-C., Inkson, J.C.: Semicond. Sci. Technol. 11, 1635 (1996)

    Article  Google Scholar 

  5. Tan, W.-C., Inkson, J.C.: Phys. Rev. B 53, 6947 (1996)

    Article  Google Scholar 

  6. Pourmand, S.E., Rezaei, G.: Physica B: Condensed Matter 543, 27 (2018)

    Article  Google Scholar 

  7. Nasri, D.: Physica B: Condensed Matter 540, 51 (2018)

    Article  Google Scholar 

  8. García, L.F., Robayo, R., Mikhailov, I.D.: Physica B: Condensed Matter 390, 340 (2017)

    Article  Google Scholar 

  9. Klama, S.: Physica B: Condensed Matter 191, 281 (1993)

    Article  Google Scholar 

  10. Klama, S.: Physica B: Condensed Matter 193, 295 (1994)

    Article  Google Scholar 

  11. Dantas, L., Furtado, C.: Phys. Lett. A 377, 2926 (2013)

    Article  MathSciNet  Google Scholar 

  12. Ridley, B.K.: Hybrid Phonons in Nanostructures. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  13. Razeghi, M.: Fundamentals of Solid State Engineering. Kluwer Academic Publishers, New York (2002)

    Google Scholar 

  14. Tan, W., Inkson, J.C., Srivastava, G.P.: Semicond. Sci. Technol. 9, 1305 (1994)

    Article  Google Scholar 

  15. Ando, T., Aoki, H.: Physica B: Condensed Matter 184, 365 (1993)

    Article  Google Scholar 

  16. Filgueiras, C., Silva, E.O.: Phys. Lett. A 379, 2110 (2015)

    Article  MathSciNet  Google Scholar 

  17. Loss, D., Goldbart, P.M.: Phys. Rev. B. 45, 13544 (1992)

    Article  Google Scholar 

  18. Loss, D., Goldbart, P.M., Balatsky, A.V.: Phys. Rev. Lett. 65, 1655 (1990)

    Article  Google Scholar 

  19. Wang, L.G.: Physica B: Condensed Matter 404, 143 (2009)

    Article  Google Scholar 

  20. Bagraev, N.T., et al.: Physica B: Condensed Matter 378–380, 894 (2006)

    Article  Google Scholar 

  21. Zhou, Y.-C., Fang, Y.-Z., He, G.-P.: Physica B: Condensed Matter 226, 413 (1996)

    Article  Google Scholar 

  22. Bulaev, D.V., Geyler, V.A., Margulis, V.A.: Phys. Rev. B 69, 195313 (2004)

    Article  Google Scholar 

  23. Tsitsishvili, E., Lozano, G.S., Gogolin, A.O.: Phys. Rev. B 70, 115316 (2004)

    Article  Google Scholar 

  24. Sim, H.-S., et al.: Phys. Rev. Lett. 80, 1501 (1998)

    Article  Google Scholar 

  25. Anda, E.V., Busser, C., Chiappe, G., Davidovich, M.A.: Physica B: Condensed Matter 320, 358 (2002)

    Article  Google Scholar 

  26. Adamowski, J., et al.: Phys. Rev. B 62, 4234 (2000)

    Article  Google Scholar 

  27. Ciurla, M., et al.: Physica E 15, 261 (2002)

    Article  Google Scholar 

  28. Gharaati, A., Khordad, R.: Superlattices Microst. 48, 276 (2010)

    Article  Google Scholar 

  29. Khordad, R.: Superlattices Microst. 54, 7 (2013)

    Article  MathSciNet  Google Scholar 

  30. Bakke, K.: Proc. R. Soc. A 479, 20220664 (2023)

    Article  Google Scholar 

  31. Bakke, K.: Physica B 674, 415590 (2024)

    Article  Google Scholar 

  32. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics, nonrelativistic theory, 3rd edn. Pergamon, Oxford (1977)

    Google Scholar 

  33. Flügge, S.: Practical Quantum Mechanics. Springer-Verlag, Berlin (1999)

    Google Scholar 

  34. ter Haar, D.: Problems in Quantum Mechanics, third edition, (Dover Publications, 1975)

  35. Marmorino, M.G.: J. Mathem. Chem. 32, 303 (2002)

    Article  MathSciNet  Google Scholar 

  36. Furtado, C., et al.: Phys. Lett. A 296, 171 (2002)

    Article  Google Scholar 

  37. Furtado, C., Bezerra, V.B., Moraes, F.: Phys. Lett. A 289, 160 (2001)

    Article  Google Scholar 

  38. Bezerra, V.B., dos Santos, I.B.: Eur. J. Phys. 13, 122 (1992)

    Article  Google Scholar 

  39. Marques, G de A, et al.: Int. J. Mod. Phys. A 20, 6051 (2005)

  40. Furtado, C., et al.: EPL 52, 1 (2000)

    Article  Google Scholar 

  41. de Lima Ribeiro, C.A., et al.: EPL 62, 306 (2003)

    Article  Google Scholar 

  42. Silva Netto, A.L., Chesman, C., Furtado, C.: Phys. Lett. A 372, 3894 (2008)

    Article  Google Scholar 

  43. da Silva, W.C.F., Bakke, K.: Eur. Phys. J. Plus 134, 131 (2019)

    Article  Google Scholar 

  44. da Silva, W.C.F., Bakke, K.: Eur. Phys. J. Plus 136, 920 (2021)

    Article  Google Scholar 

  45. Amaro Neto, J., et al.: Eur. Phys. J. Plus 133, 185 (2018)

    Article  Google Scholar 

  46. Bueno, M.J., et al.: Eur. Phys. J. B 85, 53 (2012)

    Article  Google Scholar 

  47. Bueno, M.J., et al.: Eur. Phys. J. Plus 129, 201 (2014)

    Article  Google Scholar 

  48. Amaro Neto, J., et al.: Ann. Phys. (NY) 373, 273 (2016)

    Article  MathSciNet  Google Scholar 

  49. Bakke, K., Furtado, C., Sergeenkov, S.: EPL 87, 30002 (2009)

    Article  Google Scholar 

  50. Robinett, R.W.: Phys. Rep. 392, 1 (2004)

    Article  MathSciNet  Google Scholar 

  51. Bluhm, R., et al.: Phys. Lett. A 222, 220 (1996)

    Article  MathSciNet  Google Scholar 

  52. Bluhm, R., et al.: Am. J. Phys. 64, 944 (1996)

    Article  Google Scholar 

  53. Robinett, R.W.: Am. J. Phys. 68, 410 (2000)

    Article  Google Scholar 

  54. Barriola, M., Vilenkin, A.: Phys. Rev. Lett. 63, 341 (1989)

    Article  Google Scholar 

  55. Furtado, C., Moraes, F.: J. Phys. A: Math. Gen. 33, 5513 (2000)

    Article  Google Scholar 

  56. Bezerra de Mello, E.R.: Braz. J. Phys. 31, 211 (2001)

  57. Bragança, E.A.F., et al.: Eur. Phys. J. C 80, 206 (2020)

    Article  Google Scholar 

  58. Bezerra de Mello, E.R., Furtado, C.: Phys. Rev. D 56, 1345 (1997)

  59. Cavalcanti de Oliveira, A.L., Bezerra de Mello, E.R.: Int. J. Mod. Phys. A 18, 3175 (2003)

  60. Vitória, R.L.L., Belich, H.: Phys. Scr. 94, 125301 (2019)

    Article  Google Scholar 

  61. Vitória, R.L.L., da Silva, K.A.T.: EPL 142, 22002 (2023)

    Article  Google Scholar 

  62. Marques, G. de A., Bezerra, V.B.: Class. Quantum Grav. 19, 985 (2002)

  63. Bakke, K.: Eur. Phys. J. Plus 138, 85 (2023)

    Article  Google Scholar 

  64. Almeida, C.A.S., et al.: Results Phys. 47, 106343 (2023)

    Article  Google Scholar 

  65. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd ed. (Prentice Hall, 2004)

  66. Abramowitz, M., Stegum, I.A.: Handbook of mathematical functions. Dover Publications Inc., New York (1965)

    Google Scholar 

  67. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 6th edn. Elsevier Academic Press, New York (2005)

    Google Scholar 

  68. Bluhm, R., Kostelecký, V.A.: Phys. Rev. A 50, R4445 (1994)

    Article  Google Scholar 

  69. Bluhm, R., Kostelecký, V.A.: Phys. Rev. A 51, 4767 (1995)

    Article  Google Scholar 

  70. Bluhm, R., Kostelecký, V.A.: Phys. Lett. A 200, 308 (1995)

    Article  Google Scholar 

  71. Sinha, D., Berche, B.: Eur. Phys. J. B 89, 57 (2016)

    Article  Google Scholar 

  72. García, T., et al.: J. Phys.: Condens. Matter 25, 235301 (2013)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank CNPq for financial support.

Author information

Authors and Affiliations

Authors

Contributions

K. Bakke: Conceptualization, Formal analysis, Writing - original draft, review and editing.

Corresponding author

Correspondence to K. Bakke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakke, K. On a Particle Confined to the Squared Cotangent Potential in the Global Monopole Spacetime. Int J Theor Phys 63, 170 (2024). https://doi.org/10.1007/s10773-024-05703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05703-x

Keywords

Navigation