Log in

Classical Limit and Ehrenfest’s Theorem Versus Non-relativistic Limit of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we discuss the classic limit and investigate the Ehrenfest’s theorem of the Dirac equation in the context of minimal uncertainty in momentum within a noncommutative setting, and examine its \(\mathcal {CPT}\) symmetry and Lorentz symmetry violation. Also, we study the non-relativistic limit of this Dirac system, which leads to obtain a deformed Schrödinger–Pauli equation. Besides we check if this obtained equation still show explicitly the gyromagnetic factor of the electron. Interestingly, the overlap and congruence aspects of the classical and non-relativistic limits of the Dirac equation are clarified. The effects of both minimal uncertainty in momentum and noncommutativity on the Ehrenfest’s theorem and non-relativistic limit are well examined. Knowing that with both the linear Bopp–Shift and \(\star \)product, the noncommutativity is inserted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Krüger, H.: Classical limit of real Dirac theory: Quantization of relativistic central field orbits. Found. Phys. 23, 1265 (1993). https://doi.org/10.1007/BF01883679

    Article  ADS  MathSciNet  Google Scholar 

  2. Greenberg, W.R., Klein, A., Li, C.T.: Invariant tori and Heisenberg matrix mechanics: a new window on the quantum-classical correspondence. Phys. Rep. 264(1–5), 167 (1996). https://doi.org/10.1016/0370-1573(95)00036-4

    Article  ADS  Google Scholar 

  3. Bolivar, A.O.: Classical limit of fermions in phase space. J. Math. Phys. 42(9), 4020 (2001). https://doi.org/10.1063/1.1386411

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Makowski, A.J.: Exact classical limit of quantum mechanics: Central potentials and specific states. Phys. Rev. A 65(3), 032103 (2002). https://doi.org/10.1103/PhysRevA.65.032103

    Article  ADS  MathSciNet  Google Scholar 

  5. Kay, K.G.: Exact wave functions from classical orbits. II. The Coulomb, Morse, Rosen-Morse, and Eckart systems. Phys. Rev. A, 65(3), 032101 (2002). https://doi.org/10.1103/PhysRevA.65.032101

  6. Alicki, R.: Search for a border between classical and quantum worlds. Phys. Rev. A 65(3), 034104 (2002). https://doi.org/10.1103/PhysRevA.65.034104

    Article  ADS  Google Scholar 

  7. Liang, M.L., Wu, H.B.: Quantum and classical exact solutions of the time-dependent driven generalized harmonic oscillator. Phys. Scr 68(1), 41 (2003). https://doi.org/10.1238/Physica.Regular.068a00041

    Article  ADS  MATH  Google Scholar 

  8. Liang, M.L., Sun, Y.J.: Quantum-classical correspondence of the relativistic equations. Ann. Phys 314(1), 1 (2004). https://doi.org/10.1016/j.aop.2004.06.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Liang, M.L., et al.: Quantum-classical correspondence of the Dirac equation with a scalar-like potential. Pramana - J Phys. 72, 777 (2009). https://doi.org/10.1007/s12043-009-0070-3

    Article  ADS  Google Scholar 

  10. Hnilo, A.A.: Simple Explanation of the Classical Limit. Found. Phys 49, 1365 (2019). https://doi.org/10.1007/s10701-019-00310-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Physik 45, 455 (1927). https://doi.org/10.1007/BF01329203

    Article  ADS  MATH  Google Scholar 

  12. Friesecke, G., Koppen, M.: On the Ehrenfest theorem of quantum mechanics. J. Math. Phys. 50, 082102 (2009). https://doi.org/10.1063/1.3191679

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Greiner, Walter.: Relativistic quantum mechanics: Wave equations. Springer Berlin, Heidelberg (3rd Edn.). ISBN :978-3-662-02634-2. https://doi.org/10.1007/978-3-662-02634-2

  14. Haouam, I.: The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry. 11, 223 (2019). https://doi.org/10.3390/sym11020223

    Article  ADS  MATH  Google Scholar 

  15. Torres del Castillo, et al.: Schrödinger-Pauli equation for spin-3/2 particles. Rev. Mex. de Fis, 50(3), 306 (2004). ISSN 0035-001X

  16. Haouam, I., Chetouani, L.: The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative phase-space. J. Mod. Phys. 9, 2021 (2018). https://doi.org/10.4236/jmp.2018.911127

    Article  Google Scholar 

  17. Haouam, I.: The phase-space noncommutativity effect on the large and small wave-function components approach at Dirac Equation. Open Access Lib. J. (2018). https://doi.org/10.4236/oalib.1104108

    Article  Google Scholar 

  18. Haouam, I.: Foldy-wouthuysen transformation of noncommutative dirac equation in the presence of minimal uncertainty in momentum. Few-Body Syst 64, 9 (2023). https://doi.org/10.1007/s00601-023-01790-4

    Article  ADS  Google Scholar 

  19. Spohn, H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys 282(2), 420 (2000). https://doi.org/10.1006/aphy.2000.6039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Haouam, I.: On the noncommutative geometry in quantum mechanics. J. Phys. Stud. 24(2), 2002 (2020). https://doi.org/10.30970/jps.24.2002

  21. Haouam, I.: solutions of noncommutative two-dimensional position-dependent mass dirac equation in the presence of rashba spin-orbit interaction by using the Nikiforov-Uvarov Method. Int. J. Theor. Phys. 62, 111 (2023). https://doi.org/10.1007/s10773-023-05361-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Haouam, I.: Two-dimensional Pauli equation in noncommutative phase-space. Ukr. J. Phys. 66(9), 771 (2021). https://doi.org/10.15407/ujpe66.9.771

  23. Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. 1999(09), 032 (1999). https://doi.org/10.1088/1126-6708/1999/09/032

    Article  MathSciNet  MATH  Google Scholar 

  24. Martinetti, P.: Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. In Journal of Physics: Conference Series (Vol. 634, No. 1, p. 012001). IOP Publishing, (2015). https://doi.org/10.1088/1742-6596/634/1/012001

  25. Haouam, I.: On the Fisk-Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud. 24, 1801 (2020). https://doi.org/10.30970/jps.24.1801

  26. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378(4), 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gracia-Bondia, J.M.: Notes on Quantum Gravity and Noncommutative Geometry: New Paths Towards Quantum Gravity (Springer, Berlin. Heidelberg (2010). https://doi.org/10.1007/978-3-642-11897-5_1

    Article  MATH  Google Scholar 

  28. Gingrich, D.M.: Noncommutative geometry inspired black holes in higher dimensions at the LHC. J. High Energy Phys. 2010, 22 (2010). https://doi.org/10.1007/jhep05(2010)022

    Article  MathSciNet  MATH  Google Scholar 

  29. Haouam, I.: Dirac oscillator in dynamical noncommutative space. Acta. Polytech. 61(6), 689 (2021). https://doi.org/10.14311/AP.2021.61.0689

  30. Haouam, I.: Analytical solution of (2+1) dimensional irac equation in time-dependent noncommutative phase-space. Acta. Polytech. 60(2), 111 (2020). https://doi.org/10.14311/AP.2020.60.0111

  31. Haouam, I., Hassanabadi, H.: Exact solution of (2+1)-dimensional noncommutative Pauli equation in a time-dependent background. Int. J. Theor. Phys. 61, 215 (2022). https://doi.org/10.1007/s10773-022-05197-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Haouam, I., Alavi, S.A.: Dynamical noncommutative graphene. Int. J. Mod. Phys. A 37(10), 2250054 (2022). https://doi.org/10.1142/S0217751X22500543

    Article  ADS  MathSciNet  Google Scholar 

  33. Chaichian, M., et al.: Hydrogen atom spectrum and the lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716

    Article  ADS  Google Scholar 

  34. Haouam, I.:On the three-dimensional Pauli equation in noncommutative phase-space. Acta Polytech.61(1), 230 (2021). https://doi.org/10.14311/AP.2021.61.0230

  35. Gouba, L.: A comparative review of four formulations of noncommutative quantum mechanics. Int. J. Mod. Phys. A 31, 1630025 (2016). https://doi.org/10.1142/S0217751X16300258

    Article  ADS  MATH  Google Scholar 

  36. Haouam, I.: Continuity equation in presence of a non-local potential in non-commutative phase-space. Open J. Microphys. 9(3), 15 (2019). https://doi.org/10.4236/ojm.2019.93003

    Article  ADS  MATH  Google Scholar 

  37. Konishi, K., et al.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234(3), 276 (1990). https://doi.org/10.1016/0370-2693(90)91927-4

    Article  ADS  MathSciNet  Google Scholar 

  38. Maggiore, M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304(1–2), 65 (1993). https://doi.org/10.1016/0370-2693(93)91401-8

    Article  ADS  MathSciNet  Google Scholar 

  39. Kempf, A.: On quantum field theory with nonzero minimal uncertainties in positions and momenta. J. Math. Phys. 38(3), 1347 (1997). https://doi.org/10.1063/1.531814

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Scardigli, F., Casadio, R.: Generalized uncertainty principle, extra dimensions and holography. Class. Quantum Grav. 20, 3915 (2003). https://doi.org/10.1088/0264-9381/20/18/305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Pedram, P.: A class of GUP solutions in deformed quantum mechanics. Int. J. Mod. Phys. D 19(12), 2003 (2010). https://doi.org/10.1142/S0218271810018153

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bojowald, M., Kempf, A.: Generalized uncertainty principles and localization of a particle in discrete space. Phys. Rev. D 86(8), 085017 (2012). https://doi.org/10.1103/PhysRevD.86.085017

    Article  ADS  Google Scholar 

  43. Tawfik, A., Diab, A.: Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 23(12), 1430025 (2014). https://doi.org/10.1142/S0218271814300250

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Rashki, M., et al.: Interacting dark side of universe through generalized uncertainty principle. Int. J. Mod. Phys. D 28(06), 1950081 (2019). https://doi.org/10.1142/S0218271819500810

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Chung, W.S., Hassanabadi, H.: A new higher order GUP: one dimensional quantum system. Eur. Phys. J. C 79, 213 (2019). https://doi.org/10.1140/epjc/s10052-019-6718-3

    Article  ADS  Google Scholar 

  46. Nouicer, K.: Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys. Lett. B 646, 63 (2007). https://doi.org/10.1016/j.physletb.2006.12.072

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Nouicer, K.: Black hole thermodynamics to all orders in the Planck length in extra dimensions. Class. Quantum Grav. 24, 6435 (2007). https://doi.org/10.1088/0264-9381/24/24/C02

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Pedram, P.A.: Higher order GUP with minimal length uncertainty and maximal momentum II: Applications. Phys. Let. B 718(2), 638 (2012). https://doi.org/10.1016/j.physletb.2012.10.059

    Article  ADS  Google Scholar 

  49. Hassanabadi, H., et al.: Noncommutative phase space Schrödinger equation with minimal length. Adv. High Energy Phys. 2014, 6 (2014). https://doi.org/10.1155/2014/459345

    Article  MATH  Google Scholar 

  50. Dossa, F.A., et al.: Non-commutative phase space Landau problem in the presence of a minimal length. Vestnik KRAUNC. Fiz.-mat. nauki. 33(4), 188 (2020). https://doi.org/10.26117/2079-6641-2020-33-4-188-198

  51. Paul, A., Tipler, Ralph, A.: Llewellyn Modern Physics (5ed.). W. H. Freeman and Company. pp. 160–161. (2008). ISBN 978-0-7167-7550-8

  52. Bohr, N.: Über die Serienspektra der Elemente. Z. Physik 2, 423 (1920). https://doi.org/10.1007/BF01329978

    Article  ADS  Google Scholar 

  53. Foldy, L., Wouthuysen, S.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29 (1950). https://doi.org/10.1103/PhysRev.78.29

    Article  ADS  MATH  Google Scholar 

  54. Jansen, G., Hess, B.A.: Revision of the Douglas-Kroll transformation. Phys. Rev. A 39, 6016 (1989). https://doi.org/10.1103/PhysRevA.39.6016

    Article  ADS  Google Scholar 

  55. Reiher, M.: Douglas-Kroll- Hess theory: A relativistic electrons-only theory for chemistry. Theor. Chem. Acc. 116, 241 (2006). https://doi.org/10.1007/s00214-005-0003-2

    Article  Google Scholar 

  56. Eriksen, E.: Transformations of relativistic two-particle equations. Nuovo Cim. 20, 747 (1961). https://doi.org/10.1007/BF02731564

    Article  ADS  MathSciNet  Google Scholar 

  57. Gosselin, P., et al.: Semiclassical diagonalization of quantum Hamiltonian and equations of motion with berry phase corrections. Eur. Phys. J. B 58, 137 (2006). https://doi.org/10.1140/epjb/e2007-00212-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Baktavatsalou, M.: Sur une transformation de Cayley généralisant les transformations de Foldy-Woathuysen et de CiniTouschek. Nuovo Cim. 25, 964 (1962). https://doi.org/10.1007/BF02733722

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Cini, M., Touschek, B.: The relativistic limit of the theory of spin 1/2 particles. Nuovo Cim. 7, 422 (1958). https://doi.org/10.1007/BF02747708

    Article  ADS  MathSciNet  Google Scholar 

  60. McClure, J.A., Weaver, D.L.: A note on the Cini-Touschek transformation. Nuovo Cim. 38, 530 (1965). https://doi.org/10.1007/BF02750480

    Article  MathSciNet  Google Scholar 

  61. Zarei, M., Mirza, B.: Minimal uncertainty in momentum: The effects of IR gravity on quantum mechanics. Phys. Rev. D 79(12), 125007 (2009). https://doi.org/10.1103/PhysRevD.79.125007

    Article  ADS  Google Scholar 

  62. Chang, L.N., et al.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65(12), 125027 (2002). https://doi.org/10.1103/PhysRevD.65.125027

    Article  ADS  MathSciNet  Google Scholar 

  63. Brau, F., Buisseret, F.: Minimal length uncertainty relation and gravitational quantum well. Phys. Rev. D 74(3), 5 (2006). https://doi.org/10.1103/PhysRevD.74.036002

    Article  Google Scholar 

  64. Nairz, O., et al.: Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 65, 032109 (2002). https://doi.org/10.1103/PhysRevA.65.032109

    Article  ADS  Google Scholar 

  65. Stetsko, M.M.: Corrections to the ns levels of the hydrogen atom in deformed space with minimal length. Phys. Rev. A. 74(6), 062105 (2006). https://doi.org/10.1103/PhysRevA.74.062105

    Article  ADS  Google Scholar 

  66. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101(22), 221301 (2008). https://doi.org/10.1103/PhysRevLett.101.221301

    Article  ADS  Google Scholar 

  67. Chaichian, M., Nishijima, K., Tureanu, A.: Spin-statistics and CPT theorems in noncommutative field theory. Phys. Lett. B 568(1–2), 146 (2003). https://doi.org/10.1016/j.physletb.2003.06.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Sheikh-Jabbari, M.M.: C, P, and T Invariance of Noncommutative Gauge Theories. Phys. Rev. Lett. 84, 5265 (2000). https://doi.org/10.1103/PhysRevLett.84.5265

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very thankful to the anonymous referees for the constructive comments and suggestions

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilyas Haouam.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: \(\mathcal {C}\), \(\mathcal {P}\) and \(\mathcal {T}\) Discrete Symmetries and \(\mathcal {CPT}\) Symmetry

Appendix A: \(\mathcal {C}\), \(\mathcal {P}\) and \(\mathcal {T}\) Discrete Symmetries and \(\mathcal {CPT}\) Symmetry

Discrete symmetries play a fundamental role in modern theoretical physics, providing insights into the underlying structure of the universe. Among these symmetries, \(\mathcal {C}\), \(\mathcal {P}\) and \(\mathcal {T}\) are particularly significant and basic. The \(\mathcal {C}\) symmetry, or charge conjugation, involves swap** particles with their corresponding antiparticles while reversing their charges, e.g., \(e\rightarrow -e\) and \(i\rightarrow -i\). The \(\mathcal {P}\) symmetry, or parity, reflects the spatial inversion of a physical system, interchanging left and right, e.g., \(\overrightarrow{r}\rightarrow -\overrightarrow{r}\). The \(\mathcal {T}\) symmetry, or time reversal, entails reversing the direction of time in a process, e.g., \(t\rightarrow -t\). These symmetries were once believed to be individually conserved in all physical interactions. However, the discovery of certain particle decays and weak interactions violating these symmetries led to a deeper understanding of their interconnections. The \(\mathcal {CPT}\) symmetry combines charge conjugation (\(\mathcal {C}\) ) (particle antiparticle exchange), parity inversion (\(\mathcal {P}\)), and time reversal (\(\mathcal {T}\)) into a more encompassing symmetry. The combined operation of \(\mathcal {C}\), \(\mathcal {P}\) and \(\mathcal {T}\) must be an exact symmetry. It ensures that the laws of physics remain unchanged when particles are replaced by their antiparticles, space is inverted, and time flows backward simultaneously. Lorentz symmetry, on the other hand, guarantees that physical laws are the same for all observers in inertial reference frames. CPT symmetry is a powerful concept that underlies our understanding of the fundamental symmetries of the universe. Both \(\mathcal {CPT}\) and Lorentz symmetries hold a crucial role in modern quantum field theory, including the Standard Model of particle physics, and its potential violation could have profound implications for our understanding of fundamental physics and the nature of spacetime. Ongoing experimental efforts aim to test the \(\mathcal {CPT}\) symmetry with increasing precision, providing valuable insights into the symmetrical underpinnings of the universe.

Furthermore, as known in the literature, the following table shows some of the discrete \(\mathcal {C}\), \(\mathcal {P}\) and \(\mathcal {T}\) symmetries operations

Table 1 Summary of discrete symmetry operations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouam, I. Classical Limit and Ehrenfest’s Theorem Versus Non-relativistic Limit of Noncommutative Dirac Equation in the Presence of Minimal Uncertainty in Momentum. Int J Theor Phys 62, 189 (2023). https://doi.org/10.1007/s10773-023-05444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05444-3

Keywords

Navigation