Log in

Multi-Party Semi-Quantum Key Agreement Protocol Based on the Four-Qubit Cluster States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A multi-party semi-quantum key agreement protocol was proposed based on delegating quantum computation with the four-qubit cluster states. By randomly inserting confusion states into the encoding particle sequences, the proposed protocol can defend against the eavesdrop** attack from quantum center. Since quantum center does not perform joint measurement until all participants have completed the encoding processes, the protocol is immune to the participant attack. In addition, the protocol is free from outside attack because of the properties of entanglement states. And the qubit efficiency of the proposed multi-party semi-quantum key agreement protocol is higher than those of most existing multi-party quantum key agreement protocols when more than five participants are involved. It is demonstrated that the proposed multi-party semi-quantum key agreement protocol is effective and fair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

None.

Code Availability

None.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(1), 7–11 (2014)

  2. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  3. Tannous, C., Langlois, J.: Quantum key distribution protocol optimization. Ann. Phys.-Berlin. 531(4), 1800334 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  4. Cleve, R., Gottesman, D., Lo, H.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  5. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient quantum secret sharing protocol with orthogonal product states. Sci. China Ser. G-Phys. Mech. Astron. 50(3), 331–338 (2007)

    Article  ADS  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  7. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B. 25(8), 080308 (2016)

    Article  ADS  Google Scholar 

  8. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A-Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zhou, N.R., Xu, Q.D., Du, N.S., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional Bell states. Quantum Inf. Process. 20(3), 124 (2021)

    Article  MathSciNet  Google Scholar 

  10. Zhou, N., Zeng, G., **ong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  ADS  Google Scholar 

  11. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11(8), 769–780 (2000)

    Article  Google Scholar 

  12. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  13. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  14. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  15. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  16. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  19. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. Sun, Z.W., Huang, J.W., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  22. Gu, J., Hwang, T.: Improvement of “novel multiparty quantum key agreement protocol with GHZ states”. Int. J. Theor. Phys. 56(10), 3108–3116 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yin, X.R., Ma, W.P.: Multiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmission. Int. J. Theor. Phys. 58(2), 631–638 (2019)

    Article  Google Scholar 

  24. Tang, R.H., Zhang, C., Long, D.Y., Wu, P.: Improvements on “multi-party quantum key agreement protocol with bell states and single particles”. Int. J. Theor. Phys. 59(5), 1623–1637 (2020)

    Article  Google Scholar 

  25. Tang, J., Shi, L., Wei, J.H., Xue, Y., Yu, H.C.: Novel multi-party quantum key agreement protocols under collective noise. Mod. Phys. Lett. B. 35(8), 2150137 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  26. Ye, T.Y., Ye, C.Q.: Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 57(12), 3819–3834 (2018)

    Article  MathSciNet  Google Scholar 

  27. Ye, C.Q., Li, J., Chen, X.B., Tian, Y.: Efficient semi-quantum private comparison without using entanglement resource and pre-shared key. Quantum Inf. Process. 20(8), 262 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  28. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys.-Berlin. 531(8), 1800520 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ye, T.Y., Li, H.K., Hu, J.L.: Semi-quantum key distribution with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 59(9), 2807–2815 (2020)

    Article  Google Scholar 

  30. Lin, P.H., Tsai, C.-W., Hwang, T.: Mediated semi-quantum ley distribution using single photons. Ann. Phys.-Berlin. 531(8), 1800347 (2019)

    Article  ADS  Google Scholar 

  31. Lu, Y.C., Tsai, C.W., Hwang, T.: Collective attack and improvement on mediated semi-quantum key distribution using single photons. Ann. Phys.-Berlin. 532(9), 1900493 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)

    Article  MathSciNet  Google Scholar 

  33. Ye, C.Q., Ye, T.Y., He, D., Gan, Z.G.: Multiparty semi-quantum secret sharing with d-level single particle states. Int. J. Theor. Phys. 58(11), 3797–3814 (2019)

    Article  MathSciNet  Google Scholar 

  34. T. J. Xu, Y. Chen, M. J. Geng, T. Y. Ye: Single-state multi-party semiquantum key agreement protocol based on multi-particle GHZ entangled states. http://arxiv.org/licenses/nonexclusive-distrib/1.0 (2021) Access Date 11 Dec 2021

  35. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    Article  ADS  Google Scholar 

  36. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

  37. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)

    Article  ADS  Google Scholar 

  38. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A. 377(7), 518–527 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  39. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 62161025), and the Top Double 1000 Talent Programme of Jiangxi Province (Grant No. JXSQ2019201055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Ethics declarations

Conflict of Interest

There are no Conflicts of Interest or Competing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Liao, Q. & Zou, XF. Multi-Party Semi-Quantum Key Agreement Protocol Based on the Four-Qubit Cluster States. Int J Theor Phys 61, 114 (2022). https://doi.org/10.1007/s10773-022-05102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05102-0

Keywords

Navigation