Log in

Tripartite Layered Quantum Key Distribution Scheme with a Symmetrical Key Structure

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Asymmetric entanglement could provide a crucial layered key structure for quantum cryptography. A new symmetrical tripartite quantum key distribution scheme based on the simplest layered quantum key distribution (L-QKD) model is devised. With an interesting rotational symmetrical key distribution scheme, the proposed tripartite QKD protocol could establish a more integrated key system, which expands the number of conference keys for secure broadcast and distribute layered secret keys among any legitimate participants simultaneously. The proposed scheme is more flexible, robust and efficient to guarantee the fairness among communication parties than the original L-QKD protocol, and our scheme also could be applied to encryption in the butterfly network precisely. Moreover, based on three asymmetric (4, 4, 2) entangled state, a novel symmetric (4, 4, 4) entangled state to implement L-QKD scheme is discussed. Finally, the security of L-QKD scheme is analyzed via information-theoretic proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature. 299, 802 (1982)

    Article  ADS  Google Scholar 

  3. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A. 61, 052306 (2000)

    Article  ADS  Google Scholar 

  4. Bennett, C. H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers. Systems and Signal Processing. Bangalore, India, 175–179 (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ep**, M., Kampermann, H., Bruß, D.: Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Scarani, V., Bechmann, P.H., Cerf, N.J.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  8. Mayers, D.: Unconditional security in quantum cryptography. J. ACM. 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  9. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Schön, C., Solano, E., Verstraete, F.: Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005)

    Article  ADS  Google Scholar 

  11. Huang, P., Huang, J., Zhang, Zeng, G.H.: Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A. 97, 042311 (2018)

    Article  ADS  Google Scholar 

  12. Acín, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256 (2007)

    Article  Google Scholar 

  13. Luo, M.X.: Computationally efficient nonlinear bell inequalities for quantum networks. Phys. Rev. Lett. 120, 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X.: Quantum network communication: a discrete-time quantum-walk approach. Science China Inf. Sci. 61, 042501 (2018)

    Article  MathSciNet  Google Scholar 

  15. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication—the butterfly and beyond. IEEE Trans. Inf. Theory. 56, 3478 (2010)

    Article  MathSciNet  Google Scholar 

  16. Bechmann, P.H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A. 61, 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  18. Pivoluska, M., Huber, M., Malik, M.: Layered quantum key distribution. Phys. Rev. A. 97, 032312 (2018)

    Article  ADS  Google Scholar 

  19. Wang, X.B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92, 077902 (2004)

    Article  ADS  Google Scholar 

  20. **u, X.M., Li, Q.Y., Lin, Y.F., Dong, H.K., Dong, L., Gao, Y.J.: Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities. Phys. Rev. A. 94, 042321 (2016)

    Article  ADS  Google Scholar 

  21. Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental GHZ entanglement beyond qubits. ar**v. 1708, 03881 (2017)

  22. Hiesmayr, B.C., De Dood, M.J.A., Löffler, W.: Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601 (2016)

    Article  ADS  Google Scholar 

  23. Malik, M., Erhard, M., Huber, M.: Multi-photon entanglement in high dimensions. Nat. Photonics. 10, 248 (2016)

    Article  ADS  Google Scholar 

  24. Huber, M., de Vicente, J.I.: Structure of multidimensional entanglement in multipartite systems. Phys. Rev. Lett. 110, 030501 (2013)

    Article  ADS  Google Scholar 

  25. Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory. 46, 1204 (2000)

    Article  MathSciNet  Google Scholar 

  26. Ep**, M., Kampermann, H., Bruss, D.: Robust entanglement distribution via quantum network coding. New J. Phys. 18, 103052 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, D., Gao, F., Qin, S., Wen, Q.: Perfect quantum multiple-unicast network coding protocol. Quantum Inf. Process. 17, 13 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bechmann-Pasquinucci, H., Gisin, N.: Incoherent and coherent eavesdrop** in the six-state protocol of quantum cryptography. Phys. Rev. A. 59, 4238 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A. 72, 012332 (2005)

    Article  ADS  Google Scholar 

  30. Li, C.Y., Zhou, H.Y., Wang, Y.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  31. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  32. Lucamarini, M., Patel, K.A., Dynes, J.F.: Efficient decoy-state quantum key distribution with quantified security. Opt. Express. 21, 24550 (2013)

    Article  ADS  Google Scholar 

  33. **u, X.M., Dong, L., Gao, Y.J.: Secure four-site distribution and quantum communication of χ− type entangled states. Opt. Commun. 284, 2065–2069 (2011)

    Article  ADS  Google Scholar 

  34. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74, 054302 (2006)

    Article  ADS  Google Scholar 

  35. Cai, Q.Y.: Eavesdrop** on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351, 23–25 (2006)

    Article  ADS  Google Scholar 

  36. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster state. Ann. Phys. 531, 1970031 (2019)

    Article  MathSciNet  Google Scholar 

  37. Liao, L., Peng, X., Shi, J., Guo, Y.: Graph state-based quantum group authentication scheme. J. Phys. Soc. Jpn. 86, 024403 (2017)

    Article  ADS  Google Scholar 

  38. Wang, X.W., **a, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283, 1196–1199 (2010)

    Article  ADS  Google Scholar 

  39. Chai, G., Cao, Z.W., Liu, W.Q., Wang, S.Y., Huang, P., Zeng, G.H.: Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A. 99, 032326 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that help improve the quality of this manuscript. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033), the China Scholarship Council (Grant No. 201606825042), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XH., Yan, XY., Wang, YQ. et al. Tripartite Layered Quantum Key Distribution Scheme with a Symmetrical Key Structure. Int J Theor Phys 59, 562–573 (2020). https://doi.org/10.1007/s10773-019-04349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04349-4

Keywords

Navigation