Log in

Effects of Isotopes on the Triple Points of Carbon Dioxide and Sulfur Hexafluoride

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The triple points of carbon dioxide (CO2 TP) and sulfur hexafluoride (SF6 TP) are candidate substitutes for the triple point of mercury from the set of defining points of the international temperature scale of 1990. For the replacement to be successful, the measurement performances of CO2 TP and SF6 TP need to be improved. Compounds of CO2 and SF6 contain different isotopes of carbon, oxygen and sulfur. They fractionate in the solid and liquid phase of the compounds and shift the phase transition temperatures. Thus, the isotopic effect is a probable cause for inconsistency of measurements of CO2 TP and SF6 TP, which has motivated us to investigate it. According to the reported fractionation factors and abundances of isotopes, we predict the temperature corrections to vary from − 0.023 mK to 0.051 mK for measurements of the CO2 TP. This narrow variation implies that the refining process causes only an insignificant change compared with the natural abundances of the minority isotopes 13C and 18O in the source gas. Consequently, the small change will probably cause a minor inconsistency for measurements of the CO2 TP. By contrast, for measurements of the SF6 TP the predicted temperature corrections range from − 0.022 mK to 1.223 mK. Our predictions suggest that further investigations of the isotopic effect on measurements of the TP of CO2 and the TP of SF6 are desirable, particularly for the latter molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Preston-Thomas, Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  2. R.E. Bedford, G. Bonnier, H. Maas, F. Pavese, Metrologia 33, 133 (1996)

    Article  ADS  Google Scholar 

  3. A. Michels, B. Blaisse, G. Koens, Physica 9, 356 (1942)

    Article  ADS  Google Scholar 

  4. A. Michels, T. Wassenaar, T. Sluyters, W. Degraaff, Physica 23, 89 (1957)

    Article  ADS  Google Scholar 

  5. D. Ambrose, Br. J. Appl. Phys. 8, 32 (1957)

    Article  ADS  Google Scholar 

  6. D.R. Lovejoy, Nature 197, 353–354 (1963)

    Article  ADS  Google Scholar 

  7. M.J. Hiza, Cryogenics 10, 106 (1970)

    Article  ADS  Google Scholar 

  8. R. Blanesrex, E.P.A. Fernandez, F. Guzman, Cryogenics 22, 113 (1982)

    Article  ADS  Google Scholar 

  9. F. Pavese, D. Ferri, TMCSI 5, 217 (1982)

    Google Scholar 

  10. J. Ancsin, Metrologia 29, 71 (1992)

    Article  ADS  Google Scholar 

  11. Y. Kawamura, N. Matsumoto, T. Nakano, Metrologia 57, 015004 (2020)

    Article  ADS  Google Scholar 

  12. W.L. Tew, K.N. Quelhas, J. Res. Natl. Inst. Stand. Technol. 123, 12013 (2018)

    Article  Google Scholar 

  13. P.M.C. Rourke, Metrologia 53, L1 (2016)

    Article  ADS  Google Scholar 

  14. Y. Kawamura, T. Nakano, Metrologia 57(1), 014003 (2020)

    Article  ADS  Google Scholar 

  15. Ting Li, Jian** Sun, Hongjun Wang, Inseok Yang, **aopeng Hao, Jiang Pan, **nan Yang and Yiming Ruan, Metrologia 58, 035008 (2021)

  16. J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. de Bievre, M. Groning et al., Pure Appl. Chem. 88, 293 (2016)

    Article  Google Scholar 

  17. D.R. White, W.L. Tew, Int. J. Thermophys. 31, 1644–1653 (2010)

    Article  ADS  Google Scholar 

  18. V. Faghihi, A. Peruzzi, A.T. Aerts-Bijma, H.G. Jansen, J.J. Spriensma, J. van Geel, H.A.J. Meijer, Metrologia 52, 819 (2015)

    Article  ADS  Google Scholar 

  19. V. Faghihi, M. Kozicki, A.T. Aerts-Bijma, H.G. Jansen, J.J. Spriensma, A. Peruzzi, H.A.J. Meijer, Metrologia 52, 827 (2015)

    Article  ADS  Google Scholar 

  20. B. Fellmuth, L. Wolber, Y. Hermier, F. Pavese, P.P.M. Steur, I. Peroni, A. Szmyrka-Grzebyk, L. Lipinski, W.L. Tew, T. Nakano, H. Sakurai, O. Tamura, D. Head, K.D. Hill, A.G. Steele, Metrologia 42, 171 (2005)

    Article  ADS  Google Scholar 

  21. F. Pavese, P.P.M. Steur, Y. Hermier, K.D. Hill, J.S. Kim, L. Lipinski, K. Nagao, T. Nakano, A. Peruzzi, F. Sparasci, A. Szmyrka-Grzebyk, O. Tamura, W.L. Tew, S. Valkiers, J. van Geel, AIP Conf. Proc. 1552, 192 (2013)

    Article  ADS  Google Scholar 

  22. P.P.M. Steur, F. Pavese, B. Fellmuth, Y. Hermier, K.D. Hill, J.S. Kim, L. Lipinski, K. Nagao, T. Nakano, A. Peruzzi, F. Sparasci, A. Szmyrka-Grzebyk, O. Tamura, W.L. Tew, S. Valkiers, J. van Geel, Metrologia 52, 104 (2015)

    Article  ADS  Google Scholar 

  23. A. Prince, Alloy Phase Equilibria. (Elsevier Publishing Company, 1966), p. 47

  24. P.M. Grootes, W.G. Mook, J.C. Vogel, Zeitschrift füur Physik 221, 257 (1969)

    Article  ADS  Google Scholar 

  25. J.M. Eiler, N. Kitchen, T.A. Rahn, Geochim. Cosmochim. Acta 64, 733 (2000)

    Article  ADS  Google Scholar 

  26. D.Y. Edward, G. Albert, N. Hiroko, Geochim. Cosmochim. Acta 66, 1095 (2002)

    Article  Google Scholar 

  27. J. Eiler, P. Cartigny, A.E. Hofmann, A. Piasecki, Geochim. Cosmochim. Acta 107, 205 (2013)

    Article  ADS  Google Scholar 

  28. Y. Kawamura, N. Matusmoto, T. Nakano, Metrologia 58, 029501 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work reported in this paper has been supported by the National Natural Science Foundation of China (Grant No. 51976206). We appreciate the kind help and suggestions given by Dr. Mark Plimmer of LNE-CNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Zhang, J.T. & Feng, X.J. Effects of Isotopes on the Triple Points of Carbon Dioxide and Sulfur Hexafluoride. Int J Thermophys 42, 142 (2021). https://doi.org/10.1007/s10765-021-02882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02882-1

Keywords

Navigation