Log in

Neuroinflammation-Induced Downregulation of Hippocampacal Neuregulin 1-ErbB4 Signaling in the Parvalbumin Interneurons Might Contribute to Cognitive Impairment in a Mouse Model of Sepsis-Associated Encephalopathy

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis-associated encephalopathy (SAE) is a common complication associated with poor prognosis in septic patients, but the underlying mechanism remains unclear. We hypothesized that disturbed neuregulin 1 (NRG1)-ErbB4 signaling in the parvalbumin interneurons was involved in sepsis-induced cognitive impairment in a mouse model of SAE. The SAE model was induced by cecal ligation/perforation (CLP). Animals were randomly divided into the following six groups: sham + vehicle group, sham + NRG1 group, CLP + vehicle group, CLP + NRG1 group, CLP + NRG1 + AG1478 (ErbB4 inhibitor) group, and CLP + minocycline group. Behavioral tests and in vivo electrophysiology were performed at the indicated time points. The brain tissues were harvested to determine the levels of hippocampcal cytokines, IBA1-positive cells, NRG1, ErbB4, and parvalbumin. In the present study, sepsis induced the anxiety-like behavior and hippocampal-dependent cognitive impairment, as reflected by significantly increased distance spent in the open field test and decreased freezing time to context in the fear conditioning test. The abnormal behavioral changes co-occurred with significant increases in hippocampal IBA1-positive cells, IL-1β and IL-6 levels, and decreased NRG1, ErbB4, parvalbumin expressions, and evoked gamma activity. NRG1 treatment attenuated the sepsis-induced cognitive impairment and the associated biochemical markers, which were abolished by AG1478 administration. Notably, minocycline treatment attenuated neuroinflammation and mimicked the beneficial effects of NRG1 treatment. In summary, we provided additional evidence that the disruption of NRG1-ErbB4 signaling in the parvalbumin interneurons mediated by neuroinflammation might lead to abnormal gamma oscillations and thus contribute to cognitive impairment in a mouse model of SAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369(9): 840–851. doi:10.1056/NEJMra1208623.

  2. Iwashyna, T.J., E.W. Ely, D.M. Smith, and K.M. Langa. 2010. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16): 1787–1794. doi:10.1001/jama.2010.1553.

  3. Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews Neurology 8(10): 557–566. doi:10.1038/nrneurol.2012.183.

  4. Widmann, C.N., and M.T. Heneka. 2014. Long-term cerebral consequences of sepsis. Lancet Neurology 13(6): 630–636. doi:10.1016/S1474-4422(14)70017-1.

  5. Anderson, S.T., S. Commins, P.N. Moynagh, and A.N. Coogan. 2015. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain, Behavior, and Immunity 43: 98–109. doi:10.1016/j.bbi.2014.07.007.

  6. Annane, D., and T. Sharshar. 2015. Cognitive decline after sepsis. The Lancet Respiratory Medicine 3(1): 61–69. doi:10.1016/S2213-2600(14)70246-2.

  7. Michels, M., A.S. Vieira, F. Vuolo, H.G. Zapelini, B. Mendonça, F. Mina, D. Dominguini, A. Steckert, P.F. Schuck, J. Quevedo, F. Petronilho, and F. Dal-Pizzol. 2015. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain, Behavior, and Immunity 43: 54–59. doi:10.1016/j.bbi.2014.07.002.

  8. Gao, R., M.Q. Kan, S.G. Wang, R.H. Yang, and S.G. Zhang. 2016. Disrupted tryptophan metabolism induced cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation 39(2): 550–560. doi:10.1007/s10753-015-0279-x.

  9. Michels, M., L.G. Danielski, F. Dal-Pizzol, and F. Petronilho. 2014. Neuroinflammation: microglial activation during sepsis. Current Neurovascular Research 11(3): 262–270.

  10. Gao, R., Y.H. Tang, J.H. Tong, J.J. Yang, M.H. Ji, and S.H. Zhu. 2015. Systemic lipopolysaccharide administration-induced cognitive impairments are reversed by erythropoietin treatment in mice. Inflammation 38(5): 1949–1958. doi:10.1007/s10753-015-0175-4.

  11. Ji, M.H., L.L. Qiu, H. Tang, L.S. Ju, X.R. Sun, H. Zhang, M. Jia, Z.Y. Zuo, J.C. Shen, and J.J. Yang. 2015. Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. Journal of Neuroinflammation 12: 182. doi:10.1186/s12974-015-0401-x.

  12. Hou, X.J., K.M. Ni, J.M. Yang, and X.M. Li. 2014. Neuregulin 1/ErbB4 enhances synchronized oscillations of prefrontal cortex neurons via inhibitory synapses. Neuroscience 261: 107–117. doi:10.1016/j.neuroscience.2013.12.040.

  13. Tian, J., F. Geng, F. Gao, Y.H. Chen, J.H. Liu, J.L. Wu, Y.J. Lan, Y.N. Zeng, X.W. Li, J.M. Yang, and T.M. Gao. 2016. Down-regulation of neuregulin1/ErbB4 signaling in the hippocampus is critical for learning and memory. Molecular Neurobiology.

  14. Shamir, A., O.B. Kwon, I. Karavanova, D. Vullhorst, E. Leiva-Salcedo, M.J. Janssen, and A. Buonanno. 2012. The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. The Journal of Neuroscience 32(9): 2988–2997. doi:10.1523/JNEUROSCI.1899-11.2012.

  15. Ryu, J., B.H. Hong, Y.J. Kim, E.J. Yang, M. Choi, H. Kim, S. Ahn, T.K. Baik, R.S. Woo, and H.S. Kim. 2016. Neuregulin-1 attenuates cognitive function impairments in a transgenic mouse model of Alzheimer’s disease. Cell Death & Disease 7: e2117. doi:10.1038/cddis.2016.30.

  16. Bi, L.L., X.D. Sun, J. Zhang, Y.S. Lu, Y.H. Chen, J. Wang, F. Geng, F. Liu, M. Zhang, J.H. Liu, X.W. Li, L. Mei, and T.M. Gao. 2015. Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacology 40(4): 974–986. doi:10.1038/npp.2014.274.

  17. Chen, Y.J., M. Zhang, D.M. Yin, L. Wen, A. Ting, P. Wang, Y.S. Lu, X.H. Zhu, S.J. Li, C.Y. Wu, X.M. Wang, C. Lai, W.C. **ong, L. Mei, and T.M. Gao. 2010. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America 107(50): 21818–21823. doi:10.1073/pnas.1010669107.

  18. Guan, Y.F., C.Y. Wu, Y.Y. Fang, Y.N. Zeng, Z.Y. Luo, S.J. Li, X.W. Li, X.H. Zhu, L. Mei, and T.M. Gao. 2015. Neuregulin 1 protects against ischemic brain injury via ErbB4 receptors by increasing GABAergic transmission. Neuroscience 307: 151–159. doi:10.1016/j.neuroscience.

  19. Li, X.M., F. Su, M.H. Ji, G.F. Zhang, L.L. Qiu, M. Jia, J. Gao, Z. **e, and J.J. Yang. 2014. Disruption of hippocampal neuregulin 1-ErbB4 signaling contributes to the hippocampus-dependent cognitive impairment induced by isoflurane in aged mice. Anesthesiology 121(1): 79–88. doi:10.1097/ALN.0000000000000191.

  20. Fisahn, A., J. Neddens, L. Yan, and A. Buonanno. 2009. Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cerebral Cortex 19(3): 612–618. doi:10.1093/cercor/bhn107.

  21. Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4(1): 31–36. doi:10.1038/nprot.2008.214.

  22. Mina, F., C.M. Comim, D. Dominguini, O.J. Cassol-Jr, D.M. Dall Igna, G.K. Ferreira, M.C. Silva, L.S. Galant, E.L. Streck, J. Quevedo, and F. Dal-Pizzol. 2014. Il1-β involvement in cognitive impairment after sepsis. Molecular Neurobiology 49(2): 1069–1076. doi:10.1007/s12035-013-8581-9.

  23. Henry, C.J., Y. Huang, A. Wynne, M. Hanke, J. Himler, M.T. Bailey, J.F. Sheridan, and J.P. Godbout. 2008. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Journal of Neuroinflammation 5: 15. doi:10.1186/1742-2094-5-15.

  24. Wu, J., L. Dong, M. Zhang, M. Jia, G. Zhang, L. Qiu, M. Ji, and J. Yang. 2013. Class I histone deacetylase inhibitor valproic acid reverses cognitive deficits in a mouse model of septic encephalopathy. Neurochemical Research 38(11): 2440–2449. doi:10.1007/s11064-013-1159-0.

  25. Schwalm, M.T., M. Pasquali, S.P. Miguel, J.P. Dos Santos, F. Vuolo, C.M. Comim, F. Petronilho, J. Quevedo, D.P. Gelain, J.C. Moreira, C. Ritter, and F. Dal-Pizzol. 2014. Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Molecular Neurobiology 49(1): 380–385. doi:10.1007/s12035-013-8526-3.

  26. Sui, D.M., Q. **e, W.J. Yi, S. Gupta, X.Y. Yu, J.B. Li, J. Wang, J.F. Wang, and X.M. Deng. 2016. Resveratrol protects against sepsis-associated encephalopathy and inhibits the NLRP3/IL-1β axis in microglia. Mediators of Inflammation 2016: 1045657. doi:10.1155/2016/1045657.

  27. Hernandes, M.S., J.C. D’Avila, S.C. Trevelin, P.A. Reis, E.R. Kinjo, L.R. Lopes, H.C. Castro-Faria-Neto, F.Q. Cunha, L.R. Britto, and F.A. Bozza. 2014. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. Journal of Neuroinflammation 11: 36. doi:10.1186/1742-2094-11-36.

  28. Tuon, L., C.M. Comim, F. Petronilho, T. Barichello, I. Izquierdo, J. Quevedo, and F. Dal-Pizzol. 2008. Time-dependent behavioral recovery after sepsis in rats. Intensive Care Medicine 34(9): 1724–1731. doi:10.1007/s00134-008-1129-1.

  29. Imamura, Y., H. Wang, N. Matsumoto, T. Muroya, J. Shimazaki, H. Ogura, and T. Shimazu. 2011. Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187: 63–69. doi:10.1016/j.neuroscience.2011.04.063.

  30. Moraes, C.A., G. Santos, T.C. de Sampaio e Spohr, J.C. D’Avila, F.R. Lima, C.F. Benjamim, F.A. Bozza, and F.C. Gomes. 2015. Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis. Molecular Neurobiology 52(1): 653–663. doi:10.1007/s12035-014-8868-5.

  31. Dinel, A.L., C. André, A. Aubert, G. Ferreira, S. Layé, and N. Castanon. 2014. Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome. Psychoneuroendocrinology 40: 48–59. doi:10.1016/j.psyneuen.2013.10.014.

  32. Ransohoff, R.M. 2016. How neuroinflammation contributes to neurodegeneration. Science 353(6301): 777–783. doi:10.1126/science.aag2590.

    Article  CAS  PubMed  Google Scholar 

  33. Rossi, S., L. Muzio, V. De Chiara, G. Grasselli, A. Musella, G. Musumeci, G. Mandolesi, R. De Ceglia, S. Maida, E. Biffi, A. Pedrocchi, A. Menegon, G. Bernardi, R. Furlan, G. Martino, and D. Centonze. 2011. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity 25(5): 947–956. doi:10.1016/j.bbi.2010.10.004.

  34. Fuchs, E.C., A.R. Zivkovic, M.O. Cunningham, S. Middleton, F.E. Lebeau, D.M. Bannerman, A. Rozov, M.A. Whittington, R.D. Traub, J.N. Rawlins, and H. Monyer. 2007. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53(4): 591–604.

  35. Yamamoto, J., J. Suh, D. Takeuchi, and S. Tonegawa. 2014. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157(4): 845–857. doi:10.1016/j.cell.2014.04.009.

  36. Verret, L., E.O. Mann, G.B. Hang, A.M. Barth, I. Cobos, K. Ho, N. Devidze, E. Masliah, A.C. Kreitzer, I. Mody, L. Mucke, and J.J. Palop. 2012. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149(3): 708–721. doi:10.1016/j.cell.2012.02.046.

  37. Colgin, L.L., T. Denninger, M. Fyhn, T. Hafting, T. Bonnevie, O. Jensen, M.B. Moser, and E.I. Moser. 2009. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(7271): 353–357. doi:10.1038/nature08573.

  38. Carlén, M., K. Meletis, J.H. Siegle, J.A. Cardin, K. Futai, D. Vierling-Claassen, C. Rühlmann, S.R. Jones, K. Deisseroth, M. Sheng, C.I. Moore, and L.H. Tsai. 2012. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Molecular Psychiatry 17(5): 537–548. doi:10.1038/mp.2011.31.

Download references

Acknowledgments

This study was supported by grants from the National Science Foundation of China (Nos. 81300946 and 81471105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-jun Yang or **-chun Shen.

Ethics declarations

The study protocol was approved by the Ethics Committee of the Nan**g Integrated Traditional Chinese and Western Medicine Hospital, affiliated with the Nan**g University of Chinese Medicine, and all procedures were performed in accordance with the Guideline for the Care and Use of Laboratory Animals from the National Institutes of Health, USA.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Ji, Mh., Gao, Dp. et al. Neuroinflammation-Induced Downregulation of Hippocampacal Neuregulin 1-ErbB4 Signaling in the Parvalbumin Interneurons Might Contribute to Cognitive Impairment in a Mouse Model of Sepsis-Associated Encephalopathy. Inflammation 40, 387–400 (2017). https://doi.org/10.1007/s10753-016-0484-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0484-2

KEY WORDS

Navigation