Log in

Feature of solid–liquid metals reaction revealed by conversion electron Mössbauer spectrometry

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Selective electrolytic dissolution of the η-zinc layer of continuous galvanized steel sheet has been utilized to uncover the Fe–Al intermetallic layer which inhibits the formation of other binary Fe–Zn intermetallic compounds. The characterization of the Fe–Al–Zn compounds by scanning electron microscopy, Mössbauer spectrometry and semi-grazing X-ray diffraction brings new enlightment about the conditions which control nucleation and growth as well as collapse of the inhibition layer and the resulting morphology of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perrot, P., Tissier, J.-C., Dauphin, J.-Y.: Stable and metastable equilibria in the Fe–Zn–Al system at 450°C. Z. Met.kd. 83(11), 786–790 (1992)

    Google Scholar 

  2. Foct, J., Perrot, P., Reumont, G.: Interpretation of the role of silicon on the galvanizing reaction based on kinetics, morphology and thermodynamics. Scr. Metall. Mater. 28, 1195–1200 (1993)

    Article  Google Scholar 

  3. Avettand-Fènoël, M.-N., Reumont, G., Goodwin, F., Perrot, P., Foct, J.: Effect of tin added to the zinc bath on the formation and the microstructure of hot-dip galvanized coatings. Z. Met.kd. 97(8), 1183–1192 (2006)

    Google Scholar 

  4. Avettand-Fènoël, M.-N., Hadadi, A., Reumont, G., Perrot, P.: Experimental Zn rich corner of the Fe–Zn–Cu ternary phase diagram at 460°C. J. Mater. Sci. Lett. 43, 1740–1744 (2008)

    ADS  Google Scholar 

  5. Strutzenberger, J., Faderl, F.: Solidification and spangle formation of hot-dip galvanized zinc coatings. Metall. Mater. Trans. 29A, 634–646 (1998)

    Google Scholar 

  6. Foct, J., Avettand-Fènoël, M.-N.: The alloying elements tool box useful for hot-dip galvanizing. In: Tsuru, T. (ed.) Galvatech 2007, pp. 327–332. ISI, Japan (2007)

    Google Scholar 

  7. Mac Devitt, E.T., Meshii, M.: Electron microscopy study of the microstructural evolution in the early stages of galvannealing. In: Goodwin, F.E. (ed.) Zinc-based Steel Coating Systems: Production and Performance, pp. 127–136. The Minerals, Metals and Materials Society (1998)

  8. Chirazi, A., Poulon Quintin, A., Reumont, G., Foct, J.: Numerical study of Pb addition effects on hot-dip galvanized steel microstructure using novel hexagonal growth laws. AIST Trans. 4(4), 193–207 (2007)

    Google Scholar 

  9. Baril, E., L’Esperance, G.: Studies of the morphology of the Al-rich interfacial layer formed during the hot-dip galvanizing of steel sheet. Metall. Mater. Trans. 30, 681–695 (1999)

    Google Scholar 

  10. Tang, N. Y., Adams, G.R.: Studies of the inhibition of alloy formation in hot-dip galvanized coatings. In: Marder, A.R. (ed.) The Physical Metallurgy of Zinc Coated Steels, pp. 41–54. The Minerals, Metals and Materials Society (1993)

  11. Foct, J.: Answers and silences of Mössbauer spectrometry to questions related to surface treatment. Mössbauer Eff. Ref. Data J. 25(10), 311–314 (2002)

    Google Scholar 

  12. Cook, D.C., Grant, R.G.: Iron–zinc intermetallics in commercial galvanneal steel coatings. In: Long, J., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 2, pp. 225–271. Plenum, New York (1996)

    Google Scholar 

  13. Kajihara, M.: Quantitative evaluation of interdiffusion in Fe2Al5 during reactive diffusion in the binary Fe–Al system. Mater. Trans. 47(6), 1480–1484 (2006)

    Article  Google Scholar 

  14. Coddington, T.Q., Cook, D.C.: Mössbauer spectroscopy of aluminium substituted galvanneal steel. In: Ortalli, I. (ed.) ICAME-95 Conference Proceedings, vol. 50, pp. 925–928. SIF, Bologna (1996)

    Google Scholar 

  15. Dauphin, J.Y., Rochegude, P., Foct, J.: Etude de la phase ZnFe Γ par spectromètre Mössbauer. C. R. Acad. Sci. Paris. T292S11, 53–56 (1981)

    Google Scholar 

  16. Prudencio, L.M., Nogueira, I.D., Waerenborgh, J.C., Goncalves, A.P., Conde, O., da Silva, R.C.: Formation of Al–Fe surface alloys by ion implantation of Fe in Al. Surf. Coat. Technol. 158–159, 339–342 (2002)

    Article  Google Scholar 

  17. Stenberg, L., Sjovall, R., Lidin, S.: On the compound coordinationpolyhedron in MnAl6 and Fe2Al5. J. Solid State Chem. 124, 65–68 (1996)

    Article  ADS  Google Scholar 

  18. Nakano, J., Malakhov, D.V., Yamaguchi, S., Purdy, G.R.: A full thermodynamic optimization of the Fe–Zn–Al system within the 420–500°C temperature range. Calphad 31, 125–140 (2007)

    Article  Google Scholar 

  19. Larikov, L.N.: Diffusion. In: Westbrook, J.H., Fleischer, R.L. (eds.) Intermetallic Compounds. vol. 1, pp. 757–770. J. Wiley (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Foct.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avettand-Fenoel, MN., Cordier-Robert, C., Guillemot, G. et al. Feature of solid–liquid metals reaction revealed by conversion electron Mössbauer spectrometry. Hyperfine Interact 190, 29–36 (2009). https://doi.org/10.1007/s10751-009-9918-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-009-9918-7

Keywords

Navigation