Log in

N-glycoprotein macroheterogeneity: biological implications and proteomic characterization

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosylation is a co- and post-translational modification that is critical for the regulation of the biophysical properties and biological activities of diverse proteins. Biosynthetic pathways for protein glycosylation are inherently inefficient, resulting in high structural diversity in mature glycoproteins. Macroheterogeneity is the structural diversity due to the presence or absence of glycans at specific glycosylation sites, and is caused by inefficiency in the initial transfer of glycans to proteins. Here, we review the enzymatic and evolutionary mechanisms controlling macroheterogeneity, its biological consequences in physiological and disease states, its relevance to heterologous production and glycoengineering of glycoproteins, and mass spectrometry based methods for its analysis. We highlight the importance of the analysis of macroheterogeneity for a complete understanding of glycoprotein biosynthesis and function, and emphasize how advances in mass spectrometry glycoproteomics will enable analysis of this critical facet of glycoprotein structural diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science (New York, N.Y.) 291(5512), 2364–2369 (2001)

    Article  CAS  Google Scholar 

  2. Aebi, M.: N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833(11), 2430–2437 (2013). doi:10.1016/j.bbamcr.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Abu-Qarn, M., Eichler, J., Sharon, N.: Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18(5), 544–550 (2008). doi:10.1016/j.sbi.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  4. Spiro, R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4), 43R–56R (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Wopereis, S., Lefeber, D.J., Morava, E., Wevers, R.A.: Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin. Chem. 52(4), 574–600 (2006). doi:10.1373/clinchem.2005.063040

    Article  CAS  PubMed  Google Scholar 

  6. Gupta, R., Birch, H., Rapacki, K., Brunak, S., Hansen, J.E.: O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res. 27(1), 370–372 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tran, D.T., Ten Hagen, K.G.: Mucin-type O-glycosylation during development. J. Biol. Chem. 288(10), 6921–6929 (2013). doi:10.1074/jbc.R112.418558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lommel, M., Strahl, S.: Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19(8), 816–828 (2009). doi:10.1093/glycob/cwp066

    Article  CAS  PubMed  Google Scholar 

  9. Goto, M.: Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci. Biotechnol. Biochem. 71(6), 1415–1427 (2007). doi:10.1271/bbb.70080

    Article  CAS  PubMed  Google Scholar 

  10. Bond, M.R., Hanover, J.A.: A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208(7), 869–880 (2015). doi:10.1083/jcb.201501101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakaidani, Y., Nomura, T., Matsuura, A., Ito, M., Suzuki, E., Murakami, K., Nadano, D., Matsuda, T., Furukawa, K., Okajima, T.: O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nat. Commun. 2, 583 (2011). doi:10.1038/ncomms1591

    Article  PubMed  CAS  Google Scholar 

  12. Cylwik, B., Lipartowska, K., Chrostek, L., Gruszewska, E.: Congenital disorders of glycosylation. part II. defects of protein O-glycosylation. Acta Biochim. Pol. 60(3), 361–368 (2013)

    CAS  PubMed  Google Scholar 

  13. Kelleher, D.J., Gilmore, R.: An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4), 47R–62R (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Schulz, B.L.: Beyond the sequon: sites of N-glycosylation. In: Petrescu, S. (ed.) Glycosylation, pp. 21–40. Intech, Rijeka (2012)

    Google Scholar 

  15. Lizak, C., Gerber, S., Numao, S., Aebi, M., Locher, K.P.: X-ray structure of a bacterial oligosaccharyltransferase. Nature 474(7351), 350–355 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Jones, J., Krag, S.S., Betenbaugh, M.J.: Controlling N-linked glycan site occupancy. Biochim. Biophys. Acta 1726(2), 121–137 (2005). doi:10.1016/j.bbagen.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  17. Zielinska, D.F., Gnad, F., Wisniewski, J.R., Mann, M.: Precision map** of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5), 897–907 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz-Canada, C., Kelleher, D.J., Gilmore, R.: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136(2), 272–283 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nasab, F.P., Schulz, B.L., Gamarro, F., Parodi, A.J., Aebi, M.: All in one: leishmania major STT3 proteins substitute for the whole oligosaccharyltransferase complex in Saccharomyces cerevisiae. Mol. Biol. Cell 19(9), 3758–3768 (2008). doi:10.1091/mbc.E08-05-0467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Izquierdo, L., Mehlert, A., Ferguson, M.A.: The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases. Glycobiology 22(5), 696–703 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izquierdo, L., Schulz, B.L., Rodrigues, J.A., Güther, M.L., Procter, J.B., Barton, G.J., Aebi, M., Ferguson, M.A.: Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases. EMBO J. 28(17), 2650–2661 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schulz, B.L., Stirnimann, C.U., Grimshaw, J.P.A., Brozzo, M.S., Fritsch, F., Mohorko, E., Capitani, G., Glockshuber, R., Grütter, M.G., Aebi, M.: Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc. Natl. Acad. Sci. U. S. A. 106(27), 11061–11066 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jamaluddin, M.F.B., Bailey, U.M., Tan, N.Y.J., Stark, A.P., Schulz, B.L.: Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p. Protein Sci. 20(5), 849–855 (2011). doi:10.1002/pro.610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mohd Yusuf, S.N., Bailey, U.M., Tan, N.Y.J., Jamaluddin, M.F.B., Schulz, B.L.: Mixed disulfide formation in vitro between a glycoprotein substrate and yeast oligosaccharyltransferase subunits Ost3p and Ost6p. Biochem. Biophys. Res. Commun. 432(3), 438–443 (2013). doi:10.1016/j.bbrc.2013.01.128

    Article  CAS  PubMed  Google Scholar 

  25. Cherepanova, N.A., Shrimal, S., Gilmore, R.: Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J. Cell Biol. 206(4), 525–539 (2014). doi:10.1083/jcb.201404083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamaluddin, M.F., Bailey, U.M., Schulz, B.L.: Oligosaccharyltransferase subunits bind polypeptide substrate to locally enhance N-glycosylation. Mol. Cell. Proteomics 13(12), 3286–3293 (2014). doi:10.1074/mcp.M114.041178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwarz, M., Knauer, M., Lehle, L.: Yeast oligosaccharyltransferase consists of two functionally distinct sub-complexes, specified by either the Ost3p or Ost6p subunit. FEBS Lett. 579(29), 6564–6568 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Spirig, U., Bodmer, D., Wacker, M., Burda, P., Aebi, M.: The 3.4-kDa Ost4 protein is required for the assembly of two distinct oligosaccharyltransferase complexes in yeast. Glycobiology 15(12), 1396–1406 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Karaoglu, D., Kelleher, D.J., Gilmore, R.: Functional characterization of Ost3p. loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J. Cell Biol. 130(3), 567–577 (1995)

    Article  CAS  PubMed  Google Scholar 

  30. Schulz, B.L., Aebi, M.: Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell. Proteomics 8(2), 357–364 (2009). doi:10.1074/mcp.M800219-MCP200

    Article  CAS  PubMed  Google Scholar 

  31. Shrimal, S., Trueman, S.F., Gilmore, R.: Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. J. Cell Biol. 201(1), 81–95 (2013). doi:10.1083/jcb.201301031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shrimal, S., Gilmore, R.: Glycosylation of closely spaced acceptor sites in human glycoproteins. J. Cell Sci. 126(Pt 23), 5513–5523 (2013). doi:10.1242/jcs.139584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohorko, E., Owen, R.L., Malojcic, G., Brozzo, M.S., Aebi, M., Glockshuber, R.: Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure (London, England : 1993) 22(4), 590–601 (2014). doi:10.1016/j.str.2014.02.013

    Article  CAS  Google Scholar 

  34. Bause, E.: Structural requirements of N-glycosylation of proteins. studies with proline peptides as conformational probes. Biochem. J. 209(2), 331–336 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mellquist, J.L., Kasturi, L., Spitalnik, S.L., Shakin-Eshleman, S.H.: The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37(19), 6833–6837 (1998). doi:10.1021/bi972217k

    Article  CAS  PubMed  Google Scholar 

  36. Becchis, M., Frairia, R., Ferrera, P., Fazzari, A., Ondei, S., Alfarano, A., Coluccia, C., Biglia, N., Sismondi, P., Fortunati, N.: The additionally glycosylated variant of human sex hormone-binding globulin (SHBG) is linked to estrogen-dependence of breast cancer. Breast Cancer Res. Treat. 54(2), 101–107 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. Deshpande, K.L., Fried, V.A., Ando, M., Webster, R.G.: Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc. Natl. Acad. Sci. U. S. A. 84(1), 36–40 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tate, M.D., Job, E.R., Deng, Y.M., Gunalan, V., Maurer-Stroh, S., Reading, P.C.: Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6(3), 1294–1316 (2014). doi:10.3390/v6031294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rao, R.S., Wollenweber, B.: Subtle evolutionary changes in the distribution of N-glycosylation sequons in the HIV-1 envelope glycoprotein 120. Int. J. Biol. Sci. 6(5), 407–418 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Wu, X., Salazar-Gonzalez, J.F., Salazar, M.G., Kilby, J.M., Saag, M.S., Komarova, N.L., Nowak, M.A., Hahn, B.H., Kwong, P.D., Shaw, G.M.: Antibody neutralization and escape by HIV-1. Nature 422(6929), 307–312 (2003). doi:10.1038/nature01470

    Article  CAS  PubMed  Google Scholar 

  41. Montefiori, D.C., Robinson Jr., W.E., Mitchell, W.M.: Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U. S. A. 85(23), 9248–9252 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mascola, J.R., Montefiori, D.C.: HIV-1: nature’s master of disguise. Nat. Med. 9(4), 393–394 (2003). doi:10.1038/nm0403-393

    Article  CAS  PubMed  Google Scholar 

  43. Horiya, S., MacPherson, I.S., Krauss, I.J.: Recent strategies targeting HIV glycans in vaccine design. Nat. Chem. Biol. 10(12), 990–999 (2014). doi:10.1038/nchembio.1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ragni, E., Fontaine, T., Gissi, C., Latgè, J.P., Popolo, L.: The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24(4), 297–308 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Ragni, E., Coluccio, A., Rolli, E., Rodriguez-Pena, J.M., Colasante, G., Arroyo, J., Neiman, A.M., Popolo, L.: GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae. Eukaryot. Cell 6(2), 302–316 (2007). doi:10.1128/ec.00321-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan, N.Y., Bailey, U.M., Jamaluddin, M.F., Mahmud, S.H., Raman, S.C., Schulz, B.L.: Sequence-based protein stabilization in the absence of glycosylation. Nat. Commun. 5, 3099 (2014). doi:10.1038/ncomms4099

    PubMed  Google Scholar 

  47. Burda, P., Aebi, M.: The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426(2), 239–257 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. Freeze, H.H., Chong, J.X., Bamshad, M.J., Ng, B.G.: Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94(2), 161–175 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hauri, H.P., Nufer, O., Breuza, L., Tekaya, H.B., Liang, L.: Lectins and protein traffic early in the secretory pathway. Biochem. Soc. Symp. (69), 73–82 (2002)

  50. Bosques, C.J., Tschampel, S.M., Woods, R.J., Imperiali, B.: Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J. Am. Chem. Soc. 126(27), 8421–8425 (2004). doi:10.1021/ja0496266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vagin, O., Kraut, J.A., Sachs, G.: Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am. J. Physiol. Renal Physiol. 296(3), F459–469 (2009). doi:10.1152/ajprenal.90340.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caramelo, J.J., Parodi, A.J.: A sweet code for glycoprotein folding. FEBS Lett. (2015). doi:10.1016/j.febslet.2015.07.021

    PubMed  Google Scholar 

  53. Zacchi, L.F., Caramelo, J.J., McCracken, A.A., Brodsky, J.L.: Endoplasmic reticulum associated degradation and protein quality control. In: Stahl, R.B.P. (ed.) The encyclopedia of cell biology, vol. 1, pp. 596–611. Academic, Waltham (2016)

    Chapter  Google Scholar 

  54. Hebert, D.N., Zhang, J.X., Chen, W., Foellmer, B., Helenius, A.: The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 139(3), 613–623 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zacchi, L.F., Wu, H.C., Bell, S.L., Millen, L., Paton, A.W., Paton, J.C., Thomas, P.J., Zolkiewski, M., Brodsky, J.L.: The BiP molecular chaperone plays multiple roles during the biogenesis of torsinA, an AAA+ ATPase associated with the neurological disease early-onset torsion dystonia. J. Biol. Chem. 289(18), 12727–12747 (2014). doi:10.1074/jbc.M113.529123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bragg, D.C., Kaufman, C.A., Kock, N., Breakefield, X.O.: Inhibition of N-linked glycosylation prevents inclusion formation by the dystonia-related mutant form of torsinA. Mol. Cell. Neurosci. 27(4), 417–426 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. Kostova, Z., Wolf, D.H.: Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J. Cell Sci. 118(Pt 7), 1485–1492 (2005). doi:10.1242/jcs.01740

    Article  CAS  PubMed  Google Scholar 

  58. Spear, E.D., Ng, D.T.: Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J. Cell Biol. 169(1), 73–82 (2005). doi:10.1083/jcb.200411136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. **e, W., Kanehara, K., Sayeed, A., Ng, D.T.: Intrinsic conformational determinants signal protein misfolding to the Hrd1/Htm1 endoplasmic reticulum-associated degradation system. Mol. Biol. Cell 20(14), 3317–3329 (2009). doi:10.1091/mbc.E09-03-0231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bousfield, G.R., Dias, J.A.: Synthesis and secretion of gonadotropins including structure-function correlates. Rev. Endocr. Metab. Disord. 12(4), 289–302 (2011). doi:10.1007/s11154-011-9191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ulloa-Aguirre, A., Timossi, C., Damian-Matsumura, P., Dias, J.A.: Role of glycosylation in function of follicle-stimulating hormone. Endocrine 11(3), 205–215 (1999). doi:10.1385/endo:11:3:205

    Article  CAS  PubMed  Google Scholar 

  62. Bousfield, G.R., Butnev, V.Y., Walton, W.J., Nguyen, V.T., Huneidi, J., Singh, V., Kolli, V.S., Harvey, D.J., Rance, N.E.: All-or-none N-glycosylation in primate follicle-stimulating hormone beta-subunits. Mol. Cell. Endocrinol. 260–262, 40–48 (2007). doi:10.1016/j.mce.2006.02.017

    Article  PubMed  CAS  Google Scholar 

  63. Bousfield, G.R., Butnev, V.Y., Rueda-Santos, M.A., Brown, A., Hall, A.S., Harvey, D.J.: Macro- and micro-heterogeneity in pituitary and urinary follicle-stimulating hormone glycosylation. J. Glycom. Lipidom. 4 (2014). doi: 10.4172/2153-0637.1000125

  64. Wide, L., Eriksson, K.: Dynamic changes in glycosylation and glycan composition of serum FSH and LH during natural ovarian stimulation. Ups. J. Med. Sci. 118(3), 153–164 (2013). doi:10.3109/03009734.2013.782081

    Article  PubMed  PubMed Central  Google Scholar 

  65. Valove, F.M., Finch, C., Anasti, J.N., Froehlich, J., Flack, M.R.: Receptor binding and signal transduction are dissociable functions requiring different sites on follicle-stimulating hormone. Endocrinology 135(6), 2657–2661 (1994). doi:10.1210/endo.135.6.7988456

    CAS  PubMed  Google Scholar 

  66. Matzuk, M.M., Keene, J.L., Boime, I.: Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J. Biol. Chem. 264(5), 2409–2414 (1989)

    CAS  PubMed  Google Scholar 

  67. Sumer-Bayraktar, Z., Nguyen-Khuong, T., Jayo, R., Chen, D.D., Ali, S., Packer, N.H., Thaysen-Andersen, M.: Micro- and macroheterogeneity of N-glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum. Proteomics 12(22), 3315–3327 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. Simo, R., Saez-Lopez, C., Barbosa-Desongles, A., Hernandez, C., Selva, D.M.: Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab.: TEM 26(7), 376–383 (2015). doi:10.1016/j.tem.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  69. Bocchinfuso, W.P., Ma, K.L., Lee, W.M., Warmels-Rodenhiser, S., Hammond, G.L.: Selective removal of glycosylation sites from sex hormone-binding globulin by site-directed mutagenesis. Endocrinology 131(5), 2331–2336 (1992). doi:10.1210/endo.131.5.1425432

    CAS  PubMed  Google Scholar 

  70. Raineri, M., Catalano, M.G., Hammond, G.L., Avvakumov, G.V., Frairia, R., Fortunati, N.: O-Glycosylation of human sex hormone-binding globulin is essential for inhibition of estradiol-induced MCF-7 breast cancer cell proliferation. Mol. Cell. Endocrinol. 189(1–2), 135–143 (2002)

    Article  CAS  PubMed  Google Scholar 

  71. Ng, K.M., Catalano, M.G., Pinos, T., Selva, D.M., Avvakumov, G.V., Munell, F., Hammond, G.L.: Evidence that fibulin family members contribute to the steroid-dependent extravascular sequestration of sex hormone-binding globulin. J. Biol. Chem. 281(23), 15853–15861 (2006). doi:10.1074/jbc.M512370200

    Article  CAS  PubMed  Google Scholar 

  72. Hong, E.J., Sahu, B., Janne, O.A., Hammond, G.L.: Cytoplasmic accumulation of incompletely glycosylated SHBG enhances androgen action in proximal tubule epithelial cells. Molec. Endocrinol (Baltimore, Md.) 25(2), 269–281 (2011). doi:10.1210/me.2010-0483

    Article  CAS  Google Scholar 

  73. Cousin, P., Dechaud, H., Grenot, C., Lejeune, H., Hammond, G.L., Pugeat, M.: Influence of glycosylation on the clearance of recombinant human sex hormone-binding globulin from rabbit blood. J. Steroid Biochem. Molec. Biol. 70(4–6), 115–121 (1999)

    Article  CAS  PubMed  Google Scholar 

  74. Rudd, P.M., Woods, R.J., Wormald, M.R., Opdenakker, G., Downing, A.K., Campbell, I.D., Dwek, R.A.: The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator. Biochim. Biophys. Acta 1248(1), 1–10 (1995)

    Article  PubMed  Google Scholar 

  75. Pohl, G., Kallstrom, M., Bergsdorf, N., Wallen, P., Jornvall, H.: Tissue plasminogen activator: peptide analyses confirm an indirectly derived amino acid sequence, identify the active site serine residue, establish glycosylation sites, and localize variant differences. Biochemistry 23(16), 3701–3707 (1984)

    Article  CAS  PubMed  Google Scholar 

  76. Hayes, M.L., Castellino, J.F.: Carbohydrate of the human plasminogen variants. I. carbohydrate composition, glycopeptide isolation, and characterization. J. Biol. Chem. 254(18), 8768–8771 (1979)

    CAS  PubMed  Google Scholar 

  77. Pirie-Shepherd, S.R., Stevens, R.D., Andon, N.L., Enghild, J.J., Pizzo, S.V.: Evidence for a novel O-linked sialylated trisaccharide on Ser-248 of human plasminogen 2. J. Biol. Chem. 272(11), 7408–7411 (1997)

    Article  CAS  PubMed  Google Scholar 

  78. Mori, K., Dwek, R.A., Downing, A.K., Opdenakker, G., Rudd, P.M.: The activation of type 1 and type 2 plasminogen by type I and type II tissue plasminogen activator. J. Biol. Chem. 270(7), 3261–3267 (1995)

    Article  CAS  PubMed  Google Scholar 

  79. Wittwer, A.J., Howard, S.C., Carr, L.S., Harakas, N.K., Feder, J., Parekh, R.B., Rudd, P.M., Dwek, R.A., Rademacher, T.W.: Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen activator. Biochemistry 28(19), 7662–7669 (1989)

    Article  CAS  PubMed  Google Scholar 

  80. Opdenakker, G., Van Damme, J., Bosman, F., Billiau, A., De Somer, P.: Influence of carbohydrate side chains on activity of tissue-type plasminogen activator. Proc. Soc. Experiment. Biol. Med. Soc. Experiment. Biol. Med. (New York, N.Y.) 182(2), 248–257 (1986)

    Article  CAS  Google Scholar 

  81. Gonzalez-Gronow, M., Edelberg, J.M., Pizzo, S.V.: Further characterization of the cellular plasminogen binding site: evidence that plasminogen 2 and lipoprotein a compete for the same site. Biochemistry 28(6), 2374–2377 (1989)

    Article  CAS  PubMed  Google Scholar 

  82. Aisina, R., Mukhametova, L., Gershkovich, K., Varfolomeyev, S.: The role of carbohydrate side chains of plasminogen in its activation by staphylokinase. Biochim. Biophys. Acta 1725(3), 370–376 (2005). doi:10.1016/j.bbagen.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  83. Hatton, M.W., Southward, S., Ross-Ouellet, B.: Catabolism of plasminogen glycoforms I and II in rabbits: relationship to plasminogen synthesis by the rabbit liver in vitro. Metab. Clin. Exp. 43(11), 1430–1437 (1994)

    Article  CAS  PubMed  Google Scholar 

  84. Bhattacharya, S., Ploplis, V.A., Castellino, F.J.: Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J. Biomed. Biotechnol. 2012, 482096 (2012). doi:10.1155/2012/482096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fox, D., Smulian, A.G.: Plasminogen-binding activity of enolase in the opportunistic pathogen Pneumocystis carinii. Med. Mycol. 39(6), 495–507 (2001)

    Article  CAS  PubMed  Google Scholar 

  86. Coleman, J.L., Gebbia, J.A., Piesman, J., Degen, J.L., Bugge, T.H., Benach, J.L.: Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89(7), 1111–1119 (1997)

    Article  CAS  PubMed  Google Scholar 

  87. Crowe, J.D., Sievwright, I.K., Auld, G.C., Moore, N.R., Gow, N.A., Booth, N.A.: Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol. Microbiol. 47(6), 1637–1651 (2003)

    Article  CAS  PubMed  Google Scholar 

  88. Verhamme, I.M., Panizzi, P.R., Bock, P.E.: Pathogen activators of plasminogen. J. Thrombos. Haemostas. : JTH 13(Suppl 1), S106–114 (2015). doi:10.1111/jth.12939

    Article  CAS  Google Scholar 

  89. De Oliveira, D.M., Law, R.H., Ly, D., Cook, S.M., Quek, A.J., McArthur, J.D., Whisstock, J.C., Sanderson-Smith, M.L.: Preferential acquisition and activation of plasminogen glycoform II by PAM positive group A streptococcal isolates. Biochemistry 54(25), 3960–3968 (2015). doi:10.1021/acs.biochem.5b00130

    Article  PubMed  CAS  Google Scholar 

  90. Maverakis, E., Kim, K., Shimoda, M., Gershwin, M.E., Patel, F., Wilken, R., Raychaudhuri, S., Ruhaak, L.R., Lebrilla, C.B.: Glycans in the immune system and the Altered Glycan Theory of Autoimmunity: a critical review. J. Autoimmun. 57, 1–13 (2015). doi:10.1016/j.jaut.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  91. Wright, A., Morrison, S.L.: Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol. 15(1), 26–32 (1997). doi:10.1016/s0167-7799(96)10062-7

    Article  CAS  PubMed  Google Scholar 

  92. Borel, I.M., Gentile, T., Angelucci, J., Margni, R.A., Binaghi, R.A.: Asymmetrically glycosylated IgG isolated from non-immune human sera. Biochim. Biophys. Acta 990(2), 162–164 (1989)

    Article  CAS  PubMed  Google Scholar 

  93. Dunn-Walters, D., Boursier, L., Spencer, J.: Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 37(3–4), 107–113 (2000)

    Article  CAS  PubMed  Google Scholar 

  94. Sabouri, Z., Schofield, P., Horikawa, K., Spierings, E., Kipling, D., Randall, K.L., Langley, D., Roome, B., Vazquez-Lombardi, R., Rouet, R., Hermes, J., Chan, T.D., Brink, R., Dunn-Walters, D.K., Christ, D., Goodnow, C.C.: Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc. Natl. Acad. Sci. U. S. A. 111(25), E2567–2575 (2014). doi:10.1073/pnas.1406974111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu, D., McCarthy, H., Ottensmeier, C.H., Johnson, P., Hamblin, T.J., Stevenson, F.K.: Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 99(7), 2562–2568 (2002)

    Article  CAS  PubMed  Google Scholar 

  96. Kuppers, R.: Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5(4), 251–262 (2005). doi:10.1038/nrc1589

    Article  PubMed  CAS  Google Scholar 

  97. Schneider, D., Duhren-von Minden, M., Alkhatib, A., Setz, C., van Bergen, C.A., Benkisser-Petersen, M., Wilhelm, I., Villringer, S., Krysov, S., Packham, G., Zirlik, K., Romer, W., Buske, C., Stevenson, F.K., Veelken, H., Jumaa, H.: Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 125(21), 3287–3296 (2015). doi:10.1182/blood-2014-11-609404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coelho, V., Krysov, S., Ghaemmaghami, A.M., Emara, M., Potter, K.N., Johnson, P., Packham, G., Martinez-Pomares, L., Stevenson, F.K.: Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl. Acad. Sci. U. S. A. 107(43), 18587–18592 (2010). doi:10.1073/pnas.1009388107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scott, K., Gadomski, T., Kozicz, T., Morava, E.: Congenital disorders of glycosylation: new defects and still counting. J. Inherit. Metab. Dis. 37(4), 609–617 (2014). doi:10.1007/s10545-014-9720-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jaeken, J., Hennet, T., Matthijs, G., Freeze, H.H.: CDG nomenclature: time for a change! Biochim. Biophys. Acta 1792(9), 825–826 (2009). doi:10.1016/j.bbadis.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bailey, U.M., Jamaluddin, M.F., Schulz, B.L.: Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins. J. Proteome Res. 11(11), 5376–5383 (2012). doi:10.1021/pr300599f

    Article  CAS  PubMed  Google Scholar 

  102. Rind, N., Schmeiser, V., Thiel, C., Absmanner, B., Lubbehusen, J., Hocks, J., Apeshiotis, N., Wilichowski, E., Lehle, L., Korner, C.: A severe human metabolic disease caused by deficiency of the endoplasmatic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum. Mol. Genet. 19(8), 1413–1424 (2010). doi:10.1093/hmg/ddq016

    Article  CAS  PubMed  Google Scholar 

  103. Weinstein, M., Schollen, E., Matthijs, G., Neupert, C., Hennet, T., Grubenmann, C.E., Frank, C.G., Aebi, M., Clarke, J.T., Griffiths, A., Seargeant, L., Poplawski, N.: CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features. Am. J. Med. Genet. A 136(2), 194–197 (2005). doi:10.1002/ajmg.a.30851

    Article  PubMed  Google Scholar 

  104. Katoh, T., Takase, J., Tani, Y., Amamoto, R., Aoshima, N., Tiemeyer, M., Yamamoto, K., Ashida, H.: Deficiency of alpha-glucosidase I alters glycoprotein glycosylation and lifespan in Caenorhabditis elegans. Glycobiology 23(10), 1142–1151 (2013). doi:10.1093/glycob/cwt051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Struwe, W.B., Hughes, B.L., Osborn, D.W., Boudreau, E.D., Shaw, K.M., Warren, C.E.: Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 19(12), 1554–1562 (2009). doi:10.1093/glycob/cwp136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ishikawa, H.O., Higashi, S., Ayukawa, T., Sasamura, T., Kitagawa, M., Harigaya, K., Aoki, K., Ishida, N., Sanai, Y., Matsuno, K.: Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc. Natl. Acad. Sci. U. S. A. 102(51), 18532–18537 (2005). doi:10.1073/pnas.0504115102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lehle, L., Strahl, S., Tanner, W.: Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angewandte Chemie. (International ed. in English) 45(41), 6802–6818 (2006). doi:10.1002/anie.200601645

    Article  CAS  Google Scholar 

  108. Hulsmeier, A.J., Paesold-Burda, P., Hennet, T.: N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Molec. Cell. Proteom. : MCP 6(12), 2132–2138 (2007). doi:10.1074/mcp.M700361-MCP200

    Article  CAS  Google Scholar 

  109. Jones, M.A., Ng, B.G., Bhide, S., Chin, E., Rhodenizer, D., He, P., Losfeld, M.E., He, M., Raymond, K., Berry, G., Freeze, H.H., Hegde, M.R.: DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am. J. Hum. Genet. 90(2), 363–368 (2012). doi:10.1016/j.ajhg.2011.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shrimal, S., Ng, B.G., Losfeld, M.E., Gilmore, R., Freeze, H.H.: Mutations in STT3A and STT3B cause two congenital disorders of glycosylation. Hum. Mol. Genet. 22(22), 4638–4645 (2013). doi:10.1093/hmg/ddt312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Molinari, F., Foulquier, F., Tarpey, P.S., Morelle, W., Boissel, S., Teague, J., Edkins, S., Futreal, P.A., Stratton, M.R., Turner, G., Matthijs, G., Gecz, J., Munnich, A., Colleaux, L.: Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am. J. Hum. Genet. 82(5), 1150–1157 (2008). doi:10.1016/j.ajhg.2008.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lawson, V.A., Collins, S.J., Masters, C.L., Hill, A.F.: Prion protein glycosylation. J. Neurochem. 93(4), 793–801 (2005). doi:10.1111/j.1471-4159.2005.03104.x

    Article  CAS  PubMed  Google Scholar 

  113. Bosques, C.J., Imperiali, B.: The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proc. Natl. Acad. Sci. U. S. A. 100(13), 7593–7598 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Priola, S.A., Lawson, V.A.: Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J. 20(23), 6692–6699 (2001). doi:10.1093/emboj/20.23.6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Somerville, R.A.: Host and transmissible spongiform encephalopathy agent strain control glycosylation of PrP. J. Gen. Virol. 80(Pt 7), 1865–1872 (1999)

    Article  CAS  PubMed  Google Scholar 

  116. Collinge, J., Sidle, K.C., Meads, J., Ironside, J., Hill, A.F.: Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383(6602), 685–690 (1996). doi:10.1038/383685a0

    Article  CAS  PubMed  Google Scholar 

  117. Wiseman, F.K., Cancellotti, E., Piccardo, P., Iremonger, K., Boyle, A., Brown, D., Ironside, J.W., Manson, J.C., Diack, A.B.: The glycosylation status of PrPC is a key factor in determining transmissible spongiform encephalopathy transmission between species. J. Virol. 89(9), 4738–4747 (2015). doi:10.1128/jvi.02296-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. DeArmond, S.J., Sanchez, H., Yehiely, F., Qiu, Y., Ninchak-Casey, A., Daggett, V., Camerino, A.P., Cayetano, J., Rogers, M., Groth, D., Torchia, M., Tremblay, P., Scott, M.R., Cohen, F.E., Prusiner, S.B.: Selective neuronal targeting in prion disease. Neuron 19(6), 1337–1348 (1997)

    Article  CAS  PubMed  Google Scholar 

  119. Salamat, M.K., Dron, M., Chapuis, J., Langevin, C., Laude, H.: Prion propagation in cells expressing PrP glycosylation mutants. J. Virol. 85(7), 3077–3085 (2011). doi:10.1128/jvi.02257-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brooks, S.A.: Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol. Biotechnol. 28(3), 241–255 (2004). doi:10.1385/mb:28:3:241

    Article  CAS  PubMed  Google Scholar 

  121. Roifman, C.M., Mills, G.B., Chu, M., Gelfand, E.W.: Functional comparison of recombinant interleukin 2 (IL-2) with IL-2-containing preparations derived from cultured cells. Cell. Immunol. 95(1), 146–156 (1985)

    Article  CAS  PubMed  Google Scholar 

  122. Dissing-Olesen, L., Thaysen-Andersen, M., Meldgaard, M., Hojrup, P., Finsen, B.: The function of the human interferon-beta 1a glycan determined in vivo. J. Pharmacol. Experiment. Therapeut. 326(1), 338–347 (2008). doi:10.1124/jpet.108.138263

    Article  CAS  Google Scholar 

  123. Beintema, J.J., Gaastra, W., Scheffer, A.J., Welling, G.W.: Carbohydrate in pancreatic ribonucleases. Europ. J. Biochem. / FEBS 63(2), 441–448 (1976)

    Article  CAS  Google Scholar 

  124. Hirs, C.H., Moore, S., Stein, W.H.: A chromatographic investigation of pancreatic ribonuclease. J. Biol. Chem. 200(2), 493–506 (1953)

    CAS  PubMed  Google Scholar 

  125. Tarentino, A., Plummer Jr., T.H., Maley, F.: Studies on the oligosaccharide sequence of ribonuclease B. J. Biol. Chem. 245(16), 4150–4157 (1970)

    CAS  PubMed  Google Scholar 

  126. Krebs, H., Schmid, F.X., Jaenicke, R.: Folding of homologous proteins. the refolding of different ribonucleases is independent of sequence variations, proline content and glycosylation. J. Mol. Biol. 169(2), 619–635 (1983)

    Article  CAS  PubMed  Google Scholar 

  127. Rudd, P.M., Joao, H.C., Coghill, E., Fiten, P., Saunders, M.R., Opdenakker, G., Dwek, R.A.: Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33(1), 17–22 (1994)

    Article  CAS  PubMed  Google Scholar 

  128. Baynes, J.W., Wold, F.: Effect of glycosylation on the in vivo circulating half-life of ribonuclease. J. Biol. Chem. 251(19), 6016–6024 (1976)

    CAS  PubMed  Google Scholar 

  129. Liu, L.: Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J. Pharm. Sci. 104(6), 1866–1884 (2015). doi:10.1002/jps.24444

    Article  CAS  PubMed  Google Scholar 

  130. Tao, M.H., Morrison, S.L.: Studies of aglycosylated chimeric mouse-human IgG. role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. (Baltimore, Md. : 1950) 143(8), 2595–2601 (1989)

    CAS  Google Scholar 

  131. Ju, M.S., Jung, S.T.: Aglycosylated full-length IgG antibodies: steps toward next-generation immunotherapeutics. Curr. Opin. Biotechnol. 30, 128–139 (2014). doi:10.1016/j.copbio.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  132. Raju, T.S.: Assessing Fc glycan heterogeneity of therapeutic recombinant monoclonal antibodies using NP-HPLC. Methods Molec. Biol. (Clifton, N.J.) 988, 169–180 (2013). doi:10.1007/978-1-62703-327-5_10

    Article  CAS  Google Scholar 

  133. Jeong, T.H., Son, Y.J., Ryu, H.B., Koo, B.K., Jeong, S.M., Hoang, P., Do, B.H., Song, J.A., Chong, S.H., Robinson, R.C., Choe, H.: Soluble expression and partial purification of recombinant human erythropoietin from E. coli. Protein Expr. Purif. 95, 211–218 (2014). doi:10.1016/j.pep.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  134. Elliott, S., Lorenzini, T., Asher, S., Aoki, K., Brankow, D., Buck, L., Busse, L., Chang, D., Fuller, J., Grant, J., Hernday, N., Hokum, M., Hu, S., Knudten, A., Levin, N., Komorowski, R., Martin, F., Navarro, R., Osslund, T., Rogers, G., Rogers, N., Trail, G., Egrie, J.: Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21(4), 414–421 (2003). doi:10.1038/nbt799

    Article  CAS  PubMed  Google Scholar 

  135. Taylor, J.S., Zhang, Q., Julander, J.G., Stoycheva, A.D., Tan, H., Moy, C.V., Chanda, S., Symons, J.A., Beigelman, L.N., Blatt, L.M., Hong, J.: Development of a hyperglycosylated IFN alfacon-1 (CIFN): toward bimonthly or monthly dosing for antiviral therapies. J. Interferon Cytokine Res. : Off. J. Int. Soc. Interferon Cytokine Res. 35(8), 621–633 (2015). doi:10.1089/jir.2014.0138

    Article  CAS  Google Scholar 

  136. Piirainen, M.A., de Ruijter, J.C., Koskela, E.V., Frey, A.D.: Glycoengineering of yeasts from the perspective of glycosylation efficiency. New Biotechnol. 31(6), 532–537 (2014). doi:10.1016/j.nbt.2014.03.001

    Article  CAS  Google Scholar 

  137. Ollis, A.A., Zhang, S., Fisher, A.C., DeLisa, M.P.: Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10(10), 816–822 (2014). doi:10.1038/nchembio.1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Choi, B.K., Warburton, S., Lin, H., Patel, R., Boldogh, I., Meehl, M., d’Anjou, M., Pon, L., Stadheim, T.A., Sethuraman, N.: Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl. Microbiol. Biotechnol. 95(3), 671–682 (2012). doi:10.1007/s00253-012-4067-3

    Article  CAS  PubMed  Google Scholar 

  139. Parsaie Nasab, F., Aebi, M., Bernhard, G., Frey, A.D.: A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79(3), 997–1007 (2013). doi:10.1128/aem.02817-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kowarik, M., Young, N.M., Numao, S., Schulz, B.L., Hug, I., Callewaert, N., Mills, D.C., Watson, D.C., Hernandez, M., Kelly, J.F., Wacker, M., Aebi, M.: Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25(9), 1957–1966 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bosch, M., Trombetta, S., Engstrom, U., Parodi, A.J.: Characterization of dolichol diphosphate oligosaccharide: protein oligosaccharyltransferase and glycoprotein-processing glucosidases occurring in trypanosomatid protozoa. J. Biol. Chem. 263(33), 17360–17365 (1988)

    CAS  PubMed  Google Scholar 

  142. de la Canal, L., Parodi, A.J.: Synthesis of dolichol derivatives in trypanosomatids. characterization of enzymatic patterns. J. Biol. Chem. 262(23), 11128–11133 (1987)

    PubMed  Google Scholar 

  143. Aebi, M., Gassenhuber, J., Domdey, H., te Heesen, S.: Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6(4), 439–444 (1996)

    Article  CAS  PubMed  Google Scholar 

  144. Ballou, L., Gopal, P., Krummel, B., Tammi, M., Ballou, C.E.: A mutation that prevents glucosylation of the lipid-linked oligosaccharide precursor leads to underglycosylation of secreted yeast invertase. Proc. Natl. Acad. Sci. U. S. A. 83(10), 3081–3085 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burda, P., Jakob, C.A., Beinhauer, J., Hegemann, J.H., Aebi, M.: Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology 9(6), 617–625 (1999)

    Article  CAS  PubMed  Google Scholar 

  146. De Pourcq, K., Tiels, P., Van Hecke, A., Geysens, S., Vervecken, W., Callewaert, N.: Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One 7(6), e39976 (2012). doi:10.1371/journal.pone.0039976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Olsen, J.V., Mann, M.: Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12(12), 3444–3452 (2013). doi:10.1074/mcp.O113.034181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xu, Y., Bailey, U.M., Punyadeera, C., Schulz, B.L.: Identification of salivary N-glycoproteins and measurement of glycosylation site occupancy by boronate glycoprotein enrichment and LC-ESI-MS/MS. Rapid Commun. Mass Spectrom. 28(5), 471–482 (2014)

    Article  CAS  PubMed  Google Scholar 

  149. Kaji, H., Isobe, T.: Stable isotope labeling of N-Glycosylated peptides by enzymatic deglycosylation for mass spectrometry-based glycoproteomics. Methods Mol. Biol. 951, 217–227 (2013). doi:10.1007/978-1-62703-146-2_14

    Article  CAS  PubMed  Google Scholar 

  150. Chen, C.C., Su, W.C., Huang, B.Y., Chen, Y.J., Tai, H.C., Obena, R.P.: Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 139(4), 688–704 (2014). doi:10.1039/c3an01813j

    Article  CAS  PubMed  Google Scholar 

  151. Zhang, H., Li, X.J., Martin, D.B., Aebersold, R.: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21(6), 660–666 (2003)

    Article  CAS  PubMed  Google Scholar 

  152. Mysling, S., Palmisano, G., Højrup, P., Thaysen-Andersen, M.: Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal. Chem. 82(13), 5598–5609 (2010)

    Article  CAS  PubMed  Google Scholar 

  153. Wada, Y., Tajiri, M., Yoshida, S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76(22), 6560–6565 (2004)

    Article  CAS  PubMed  Google Scholar 

  154. Li, Y., Pfüller, U., Larsson, E.L., Jungvid, H., Galaev, I.Y., Mattiasson, B.: Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography. J. Chromatogr. A 925(1–2), 115–121 (2001)

    Article  CAS  PubMed  Google Scholar 

  155. Choi, E., Loo, D., Dennis, J.W., O’Leary, C.A., Hill, M.M.: High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery. Electrophoresis 32(24), 3564–3575 (2011). doi:10.1002/elps.201100341

    Article  CAS  PubMed  Google Scholar 

  156. Wiśniewski, J.R., Zielinska, D.F., Mann, M.: Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal. Biochem. (2010)

  157. Breidenbach, M.A., Palaniappan, K.K., Pitcher, A.A., Bertozzi, C.R.: Map** yeast N-glycosites with isotopically recoded glycans. Mol. Cell. Proteomics 11(6), M111.015339 (2012). doi:10.1074/mcp.M111.015339

    Article  PubMed  PubMed Central  Google Scholar 

  158. Heywood, W.E., Mills, P., Grunewald, S., Worthington, V., Jaeken, J., Carreno, G., Lemonade, H., Clayton, P.T., Mills, K.: A new method for the rapid diagnosis of protein N-linked congenital disorders of glycosylation. J. Proteome Res. 12(7), 3471–3479 (2013). doi:10.1021/pr400328g

    Article  CAS  PubMed  Google Scholar 

  159. Sumer-Bayraktar, Z., Kolarich, D., Campbell, M.P., Ail, S., Packer, N.H., Thaysen-Andersen, M.: N-glycans modulate the function of human corticosteroid-binding globulin. Mol. Cell. Proteomics 10(8), M111.009100 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Holland, J.W., Deeth, H.C., Alewood, P.F.: Analysis of O-glycosylation site occupancy in bovine kappa-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics 5(4), 990–1002 (2005)

    Article  CAS  PubMed  Google Scholar 

  161. Packer, N.H., Lawson, M.A., Jardine, D.R., Sanchez, J.C., Gooley, A.A.: Analyzing glycoproteins separated by two-dimensional gel electrophoresis. Electrophoresis 19(6), 981–988 (1998)

    Article  CAS  PubMed  Google Scholar 

  162. Wang, B., Tsybovsky, Y., Palczewski, K., Chance, M.R.: Reliable determination of site-specific in vivo protein N-glycosylation based on collision-induced MS/MS and chromatographic retention time. J. Am. Soc. Mass Spectrom. 25(5), 729–741 (2014). doi:10.1007/s13361-013-0823-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Christiansen, M.N., Kolarich, D., Nevalainen, H., Packer, N.H., Jensen, P.H.: Challenges of determining O-glycopeptide heterogeneity: a fungal glucanase model system. Anal. Chem. 82(9), 3500–3509 (2010)

    Article  CAS  PubMed  Google Scholar 

  164. Stavenhagen, K., Hinneburg, H., Thaysen-Andersen, M., Hartmann, L., Varón Silva, D., Fuchser, J., Kaspar, S., Rapp, E., Seeberger, P.H., Kolarich, D.: Quantitative map** of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom. 48(6), 627–639 (2013). doi:10.1002/jms.3210

    Article  CAS  PubMed  Google Scholar 

  165. Xu, Y., Bailey, U.M., Schulz, B.L.: Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS. Proteomics 15(13), 2177–2186 (2015). doi:10.1002/pmic.201400465

    Article  CAS  PubMed  Google Scholar 

  166. Palmisano, G., Melo-Braga, M.N., Engholm-Keller, K., Parker, B.L., Larsen, M.R.: Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J. Proteome Res. 11(3), 1949–1957 (2012)

    Article  CAS  PubMed  Google Scholar 

  167. Robinson, N.E., Robinson, Z.W., Robinson, B.R., Robinson, A.L., Robinson, J.A., Robinson, M.L., Robinson, A.B.: Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J. Pept. Res. 63(5), 426–436 (2004)

    Article  CAS  PubMed  Google Scholar 

  168. Thaysen-Andersen, M., Packer, N.H.: Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology 22(11), 1440–1452 (2012). doi:10.1093/glycob/cws110

    Article  CAS  PubMed  Google Scholar 

  169. Segu, Z.M., Hussein, A., Novotny, M.V., Mechref, Y.: Assigning N-glycosylation sites of glycoproteins using LC/MSMS in conjunction with endo-M/exoglycosidase mixture. J. Proteome Res. 9(7), 3598–3607 (2010). doi:10.1021/pr100129n

    Article  CAS  PubMed  Google Scholar 

  170. Hülsmeier, A.J., Paesold-Burda, P., Hennet, T.: N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography mass spectrometry. Mol. Cell. Proteomics 6(12), 2132–2138 (2007)

    Article  PubMed  CAS  Google Scholar 

  171. Sun, Z., Chen, R., Cheng, K., Liu, H., Qin, H., Ye, M., Zou, H.: A new method for quantitative analysis of cell surface glycoproteome. Proteomics 12(22), 3328–3337 (2012). doi:10.1002/pmic.201200150

    Article  CAS  PubMed  Google Scholar 

  172. Sun, S., Zhang, H.: Large-scale measurement of absolute protein glycosylation stoichiometry. Anal. Chem. 87(13), 6479–6482 (2015). doi:10.1021/acs.analchem.5b01679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lin, C.Y., C, M.Y., Pai, P.J., Her, G.R.: A comparative study of glycoprotein concentration, glycoform profile and glycosylation site occupancy using isotope labeling and electrospray linear ion trap mass spectrometry. Anal. Chim. Acta 728, 49–56 (2012). doi:10.1016/j.aca.2012.03.058

    Article  CAS  PubMed  Google Scholar 

  174. Nettleship, J.E., Aplin, R., Aricescu, A.R., Evans, E.J., Davis, S.J., Crispin, M., Owens, R.J.: Analysis of variable N-glycosylation site occupancy in glycoproteins by liquid chromatography electrospray ionization mass spectrometry. Anal. Biochem. 361(1), 149–151 (2007)

    Article  CAS  PubMed  Google Scholar 

  175. Zhu, Z., Go, E.P., Desaire, H.: Absolute quantitation of glycosylation site occupancy using isotopically labeled standards and LC-MS. J. Am. Soc. Mass Spectrom. 25, 1012–1017 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Windwarder, M., Altmann, F.: Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry. J. Proteomics 108, 258–268 (2014). doi:10.1016/j.jprot.2014.05.022

    Article  CAS  PubMed  Google Scholar 

  177. Ali, L., Flowers, S.A., **, C., Bennet, E.P., Ekwall, A.K., Karlsson, N.G.: The O-glycomap of lubricin, a novel mucin responsible for joint lubrication, identified by site-specific glycopeptide analysis. Mol. Cell. Proteomics 13(12), 3396–3409 (2014). doi:10.1074/mcp.M114.040865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wada, Y.: Label-free analysis of o-glycosylation site-occupancy based on the signal intensity of glycopeptide/peptide ions. Mass Spectrom. (Tokyo) 1(2), A0008 (2012). doi:10.5702/massspectrometry.A0008

    Google Scholar 

  179. Plomp, R., Dekkers, G., Rombouts, Y., Visser, R., Koeleman, C.A., Kammeijer, G.S., Jansen, B.C., Rispens, T., Hensbergen, P.J., Vidarsson, G., Wuhrer, M.: Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Mol. Cell. Proteomics 14(5), 1373–1384 (2015). doi:10.1074/mcp.M114.047381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sturiale, L., Barone, R., Palmigiano, A., Ndosimao, C.N., Briones, P., Adamowicz, M., Jaeken, J., Garozzo, D.: Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 8(18), 3822–3832 (2008)

    Article  CAS  PubMed  Google Scholar 

  181. Bergen, H.R., Lacey, J.M., O’Brien, J.F., Naylor, S.: Online single-step analysis of blood proteins: the transferrin story. Anal. Biochem. 296(1), 122–129 (2001)

    Article  CAS  PubMed  Google Scholar 

  182. Gault, J., Ferber, M., Machata, S., Imhaus, A.F., Malosse, C., Charles-Orszag, A., Millien, C., Bouvier, G., Bardiaux, B., Pehau-Arnaudet, G., Klinge, K., Podglajen, I., Ploy, M.C., Seifert, H.S., Nilges, M., Chamot-Rooke, J., Dumenil, G.: Neisseria meningitidis type IV pili composed of sequence invariable pilins are masked by multisite glycosylation. PLoS Pathog. 11(9), e1005162 (2015). doi:10.1371/journal.ppat.1005162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

LFZ holds a Post-doctoral Fellowship from CONICET. BLS holds a National Health and Medical Research Council RD Wright Biomedical (CDF Level 2) Fellowship APP1087975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacchi, L.F., Schulz, B.L. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj J 33, 359–376 (2016). https://doi.org/10.1007/s10719-015-9641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9641-3

Keywords

Navigation