Log in

Piezo Ceramic Technology for Environmental Impact Mitigation

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The deleterious side of the use of piezoceramic materials based on lead zirconate-titanate is lead toxicity, which complicates their production and disposal. In connection with this, a new line of research has emerged to replace lead-based ceramic materials with their lead-free counterparts. Rising energy costs and the need to reduce environmental impact also require more efficient and sustainable manufacturing processes for piezoceramics. The ceramics industry is an energy-intensive industry and has great potential for improving energy efficiency, mainly by introducing modern sintering technologies. Although the toxicity of the raw materials and high energy consumption are forms of the adverse environmental impact of the technological process, the management strategies are different for each one. Several technological approaches have now been developed to lower the cost of energy in the production of ceramics. There is also significant potential to improve environmental friendliness, for example by introducing additive manufacturing methods and new methods of sintering as well as by the manufacture of composites. This article presents a brief analysis of the prospects for introducing 3D printing methods in the production of piezoceramics and piezoelectric composites from the standpoint of perfecting a strategy for mitigating environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. “RoHS Compliance Engineer R. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment,” Official J. Eurp. Union, 37, 19 – 23 (2005).

  2. J. Wu, Advances in Lead-Free Piezoelectric Materials, Singapore: Springer (2018), pp. 301 – 302.

  3. J. Koruza, et al., “Requirements for the transfer of lead-free piezoceramics into application,” J. Materiomics, 4(1), 13 – 26 (2018).

  4. J. Rödel, et al., “Transferring lead-free piezoelectric ceramics into application,” J. Eurp. Ceram. Soc., 35(6), 1659 – 1681 (2015).

  5. R. A. Goyer, “Lead toxicity: current concerns,” Environ. Health Persp., 100, 177 – 187 (1993).

    CAS  Google Scholar 

  6. L. Patrick, “Lead toxicity, a review of the literature. Part I: Exposure, evaluation, and treatment,” Alternative Med. Rev., 11(1) (2006).

  7. V. Batuman, “Lead nephropathy, gout, and hypertension,” Am. J. Medical Sci., 305(4), 241 – 247 (1993).

    CAS  Google Scholar 

  8. P. Apostoli, et al., “The effect of lead on male fertility: a time to pregnancy (TTP) study,” Am. J. Industr. Medicine, 38(3), 310 – 315 (2000).

    CAS  Google Scholar 

  9. K. H. Härdtl and H. Rau, “PbO vapor pressure in the Pb(Ti1–x)O3 system,” Solid State Comm., 7(1), 41 – 45 (1969).

    Google Scholar 

  10. M. Kosec, et al., “Effect of a chemically aggressive environment on the electromechanical behavior of modified lead titanate ceramics,” J. Korean Phys. Soc., 32, S1163 – S1166 (1998).

    CAS  Google Scholar 

  11. M. Schluep, et al., “Sustainable innovation and technology transfer industrial sector studies: Recycling — from e-waste to resources,” in: United Nations Environment Program & United Nations University, Bonn, Germany (2009).

  12. J. Jacob, et al., “Piezoelectric smart biomaterials for bone and cartilage tissue engineering,” Inflammation and Regeneration, 38(1), 1 – 11 (2018).

    Google Scholar 

  13. J. Cheng, et al., “3D printing of BaTiO3 piezoelectric ceramics for a focused ultrasonic array,” Sensors, 19(19), 4078 (2019).

    CAS  Google Scholar 

  14. A. Safari and E. K. Akdogan, “Rapid prototy** of novel piezoelectric composites,” Ferroelectrics, 331(1), 153 – 179 (2006).

    CAS  Google Scholar 

  15. M. Lebedevaite, V. Talacka, and J. Ostrauskaite, “High biorenewable content acrylate photocurable resins for DLP 3D printing,” J. Appl. Polymer Sci., 138(16), 50233 (2021).

    CAS  Google Scholar 

  16. V. S. D. Voet, et al., “Biobased acrylate photocurable resin formulation for stereolithography 3D printing,” ACS omega, 3(2), 1403 – 1408 (2018).

    CAS  Google Scholar 

  17. F. A. M. M. Gonçalves, et al., “3D printing of new biobased unsaturated polyesters by microstereo-thermallithography,” Biofabrication, 6(3), 035024 (2014).

    Google Scholar 

  18. B. Wu, et al., “Direct conversion of McDonald’s waste cooking oil into a biodegradable high-resolution 3D-printing resin,” ACS Sustainable Chem. Eng., 8(2), 1171 – 1177 (2019).

    Google Scholar 

  19. M. Maturi, et al., “Phosphorescent bio-based resin for digital light processing (DLP) 3D-printing,” Green Chem., 22(18), 6212 – 6224 (2020).

    CAS  Google Scholar 

  20. M. Lebedevaite, et al., “Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets,” Polymers, 11(1), 116 (2019).

    Google Scholar 

  21. J. T. Miao, et al., “Three-dimensional printing fully biobased heat-resistant photoactive acrylates from aliphatic biomass,” ACS Sustainable Chem. Eng., 8(25), 9415 – 9424 (2020).

    CAS  Google Scholar 

  22. J. T. Sutton, et al., “Lignin-containing photoactive resins for 3D printing by stereolithography,” ACS Appl. Mater. Interfaces, 10(42), 36456 – 36463 (2018).

    CAS  Google Scholar 

  23. F. P. W. Melchels, J. Feijen, D. W. Grijpma, “A poly (D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials, 30(23 – 24), 3801 – 3809 (2009).

  24. T. Ibn-Mohammed, et al., “Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics,” Energy Environ. Sci., 9(11), 3495 – 3520 (2016).

  25. L. Gao, et al. “Base metal co-fired multilayer piezoelectrics,” Actuators. Multidisciplinary Digital Publishing Institute, 5(1), 8 (2016).

    Google Scholar 

  26. S. J. L. Kang, Sintering: Densification, Grain Growth and Microstructure, Elsevier (2004).

  27. Z. A. Munir, D. V. Quach, and M. Ohyanagi, “Electric current activation of sintering: a review of the pulsed electric current sintering process,” J. Am. Ceram. Soc., 94(1), 1 – 19 (2011).

    CAS  Google Scholar 

  28. M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: A review of fundamentals, advantages and applications,” J. Alloys Compounds, 494(1 – 2), 175 – 189 (2010.).

  29. J. Guo, et al. “Cold sintering: progress, challenges, and future opportunities,” Annual Rev. Mater. Res., 49, 275 – 295 (2019).

    CAS  Google Scholar 

  30. T. Ibn-Mohammed, et al., “Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector,” J. Eurp. Ceram. Soc., 39(16), 5213 – 5235 (2019).

    CAS  Google Scholar 

  31. D. S. B. Heidary, M. Lanagan, and C. A. Randall, “Contrasting energy efficiency in various ceramic sintering processes,” J. Eurp. Ceram. Soc., 38(4), 1018 – 1029 (2018).

    Google Scholar 

  32. B. Maliè, et al., “Sintering of lead-free piezoelectric sodium potassium niobate ceramics,” Materials, 8(12), 8117 – 8146 (2015).

    Google Scholar 

  33. T. Kainz, et al., “Solid state synthesis and sintering of solid solutions of BNT–xBKT,” J. Eurp. Ceram. Soc., 34(15), 3685 – 3697 (2014).

    CAS  Google Scholar 

  34. B. Maliè, D. Kušèer, M. Vrabelj, and J. Koruza, “Review of methods for powder-based processing,” in: Magnetic, Ferroelectric, and Multiferroic Metal Oxides, Elsevier (2018), pp. 95 – 120; URL: https://doi.org/10.1016/B978-0-12-811180-2.00005-0

  35. A. Popoviè, et al., “Vapor pressure and thermodynamic mixing properties of the KNbO3–NaNbO3 system,” RSC Adv., 5(93), 76249 – 76256 (2015).

    Google Scholar 

  36. L. Chevalier, E. Hammond, and A. Poitou, “Extrusion of TiO2 ceramic powder paste,” J. Mater. Proc. Technol., 72(2), 243 – 248 (1997).

    Google Scholar 

  37. A. A. Kholodkova, et al., “Properties of barium titanate ceramics based on powder synthesized in supercritical water,” Ceram. Int., 44(11), 13129 – 13138 (2018).

    CAS  Google Scholar 

  38. D. Q. Nguyen, et al., “Electrical and physical characterization of bulk ceramics and thick layers of barium titanate manufactured using nanopowders,” J. Mater. Eng. Perform., 16(5), 626 – 634 (2007).

    CAS  Google Scholar 

  39. D. E. Yunus, et al., “Short fiber reinforced 3D printed ceramic composite with shear induced alignment,” Ceram. Int., 43(15), 11766 – 11772 (2017).

    CAS  Google Scholar 

  40. H.Wu, et al., “Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing,” Ceram. Int., 43(1), 968 – 972 (2017).

    CAS  Google Scholar 

  41. R. Rakshit and A. K. Das, “A review on cutting of industrial ceramic materials,” Precision Eng., 59, 90 – 109 (2019).

    Google Scholar 

  42. Z. Chen, et al., “3D printing of ceramics: A review,” J. Eurp. Ceram. Soc., 39(4), 661 – 687 (2019).

    CAS  Google Scholar 

  43. Y. Zeng, et al., “3D-printing piezoelectric composite with Honeycomb structure for ultrasonic devices,” Micromachines, 11(8), 713 (2020).

    Google Scholar 

  44. H. Giberti, M. Strano, and M. Annoni, “An innovative machine for Fused Deposition Modeling of metals and advanced ceramics,” MATEC WEB of Conf., EDP Sci., 43, 03003 (2016).

    Google Scholar 

  45. K. Liu, et al. “Additive manufacturing of traditional ceramic powder via selective laser sintering with cold isostatic pressing,” Int. J. Adv. Manuf. Technol., 90(1) (945 – 952).

  46. J. H. Lee, et al., “Ceramic ink-jet printing on glass substrate using oleophobic surface treatment,” J. Korean Ceram. Soc., 53(1), 75 – 80 (2016).

    CAS  Google Scholar 

  47. E. Feilden, et al., “3D printing bioinspired ceramic composites,” Sci. Rep.s, 7(1), 1 – 9 (2017).

    CAS  Google Scholar 

  48. J. W. Halloran, “Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization,” Annual Rev. Mater. Res., 46, 19 – 40 (2016).

    CAS  Google Scholar 

  49. E. F. S. Ciacco, J. R. Rocha, and A. R. Coutinho, “The energy consumption in the ceramic tile industry in Brazil,” Appl. Thermal Eng., 113, 1283 – 1289 (2017).

    Google Scholar 

  50. C. Agrafiotis and T. Tsoutsos, “Energy saving technologies in the European ceramic sector: a systematic review,” Appl. Thermal Eng., 21(12), 1231 – 1249 (2001).

    Google Scholar 

  51. H. Cui, et al., “Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response,” Nature Mater., 18(3), 234 – 241 (2019).

    CAS  Google Scholar 

  52. H. Kim, et al., “3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications,” Macromolecular Mater. Eng., 302(11), 1700229.

  53. H. Kim, et al., “Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application,” Smart Mater. Struct., 26(8), 085027 (2017).

    Google Scholar 

  54. A. Safari, “Novel piezoelectric ceramics and composites for sensor and actuator applications,” Mater. Res. Innovations, 2(5), 263 – 269 (1999).

    CAS  Google Scholar 

  55. D. I. Woodward, et al., “Additively-manufactured piezoelectric devices,” Phys. Stat. Solidi A, 212(10), 2107 – 2113 (2015).

    CAS  Google Scholar 

  56. D. M. Gureev, R. V. Ruzhechko, andn I. V. Shishkovskii, “Selective laser sintering of PZT ceramic powders,” Tech. Phys. Lett., 26(3), 262 – 264 (2000).

  57. O. Dufaud and S. Corbel, “Stereolithography of PZT ceramic suspensions,” Rapid Prototy** J., 8(2), 83 – 90 (2002).

    Google Scholar 

  58. S. M. Gaytan, et al., “Fabrication of barium titanate by binder jetting additive manufacturing technology,” Ceram. Int., 41(5), 6610 – 6619 (2015).

    CAS  Google Scholar 

  59. H. Kim, et al., “Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique,” J. Am. Ceram. Soc., 102(6), 3685 – 3694 (2019).

    CAS  Google Scholar 

  60. W. Rowlands and B. Vaidhyanathan, “Additive manufacturing of barium titanate based ceramic heaters with positive temperature coefficient of resistance (PTCR),” J. Eurp. Ceram. Soc., 39(12), 3475 – 3483 (2019).

    CAS  Google Scholar 

  61. W.Wang, et al., “Fabrication of piezoelectric nano-ceramics via stereolithography of low viscous and non-aqueous suspensions,” J. Eurp. Ceram. Soc., 40(3), 682 – 688 (2020).

    CAS  Google Scholar 

  62. X.Wei, et al., “3D printing of piezoelectric barium titanate with high density from milled powders,” J. Eurp. Ceram. Soc., 40(15), 5423 – 5430 (2020).

    CAS  Google Scholar 

  63. W. Chen, et al., “Micro-stereolithography of KNN-based lead-free piezoceramics,” Ceram. Int., 45(4), 4880 – 4885 (2019).

    CAS  Google Scholar 

  64. Y. Li, L. Li, and B. Li, “Direct ink writing of three-dimensional (K, Na)NbO3-based piezoelectric ceramics,” Materials, 8(4), 1729 – 1737 (2015).

    CAS  Google Scholar 

  65. K. Uchino (ed.), Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing (2017).

  66. A. E. Jakus, et al., “Robust and elastic lunar and martian structures from 3D-printed regolith inks,” Sci. Rep., 7(1), 1 – 8 (2017).

    Google Scholar 

  67. G. Zhu, et al., “Reprintable polymers for digital light processing 3D printing,” Adv. Func. Mater., 31, No. 9, 2007173.

  68. V. S. D. Voet, J. Guit, and K. Loos, “Sustainable photopolymers in 3d printing: A review on biobased, biodegradable, and recyclable alternatives,” Macromolecular Rapid Comm., 42, No. 3, 2000475.

  69. M. M. Vijatoviæ, J. D. Bobic and B. D. Stojanoviæ, “History and challenges of barium titanate. Pt II,” Science of Sintering, 40(3), 235 – 244 (2008).

    Google Scholar 

  70. H. Takahashi, et al., “Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering,” Jpn. J. Appl. Phys., 45(9S), 7405 (2006).

    CAS  Google Scholar 

  71. K. Sakayori, et al., “Curie temperature of BaTiO3,” Jpn. J. Appl. Phys., 34(9S), 5443 (1995).

    CAS  Google Scholar 

  72. T. Takenaka and H. Nagata, “Current status and prospects of lead-free piezoelectric ceramics,” J. Eurp. Ceram. Soc., 25(12), 2693 – 2700 (2005).

    CAS  Google Scholar 

  73. J. Gao, et al., “Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications,” Actuators/Multidisciplinary Digital Publishing Institute, 6(3), 24 (2017).

    Google Scholar 

  74. D. R. J. Brandt, et al., “Mechanical constitutive behavior and exceptional blocking force of lead-free BZT-xBCT piezoceramics,” J. Appl. Phys., 115(20), 204107 (2014).

    Google Scholar 

  75. Y. Tian, et al., “Phase behavior transition and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics,” J. Am. Ceram. Soc., 96(2), 496 – 502 (2013).

    CAS  Google Scholar 

  76. W. Liu and X. Ren, “Large piezoelectric effect in Pb-free ceramics,” Phys. Rev. Lett., 103(25), 257602 (2009).

    Google Scholar 

  77. D. Zhang and Z. Zhang, “Effects of K excess on the preparation and characterization of (K0.5Na0.5)NbO3 ceramics,” Ferroelectrics, 466(1), 8 – 13 (2014).

    CAS  Google Scholar 

  78. A. Iacomini, et al., “Processing optimization and toxicological evaluation of lead-free piezoceramics: A KNN-based case study,” Materials, 14(15), 4337 (2021).

    CAS  Google Scholar 

  79. Y. Saito, et al., “Lead-free piezoceramics,” Nature, 432(7013), 84 – 87 (2004).

    CAS  Google Scholar 

  80. E. M. Alkoy and M. Papila, “Electrical properties of CuO added-KNN ceramics and 1 – 3 piezocomposites,” in: 2009 IEEE International Ultrasonics Symposium. IEEE (2009), pp. 960 – 963.

  81. A. Pramanick, et al., “Domains, domain walls, and defects in perovskite ferroelectric oxides: Areview of present understanding and recent contributions,” Critical Rev. Solid State Mater. Sci., 37(4), 243 – 275 (2012).

    CAS  Google Scholar 

  82. S. Zhang, et al., “Piezoelectric materials for high power, high temperature applications,” Mater. Lett., 59(27), 3471 – 3475 (2005).

    CAS  Google Scholar 

  83. H.Wei, et al., “An overview of lead-free piezoelectric materials and devices,” J. Mater. Chem. C, 6(46), 12446 – 12467 (2018).

    CAS  Google Scholar 

  84. Y. Hiruma, H. Nagata, and T. Takenaka, “Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions,” J. Appl. Phys., 104(12), 124106 (2008).

    Google Scholar 

  85. K. Reichmann, A. Feteira, and M Li, “Bismuth sodium titanate based materials for piezoelectric actuators,” Materials, 8(12), 8467 – 8495 (2015).

    CAS  Google Scholar 

  86. V. P. Tarasovskyi, et al., “Material structure control as one of the approaches to optimize physical and technical characteristics of piezoelectric ceramic materials,” Rev. Adv. Mater. Sci., 51(1), 77 – 85 (2017).

    CAS  Google Scholar 

  87. M. S. Mirza, et al., “Dice-and-fill processing and characterization of microscale and high-aspect-ratio (K, Na)NbO3-based 1 – 3 lead-free piezoelectric composites,” Ceram. Int., 42(9), 10745 – 10750 (2016).

  88. S. Walter, et al., “Manufacturing and electrical interconnection of piezoelectric 1 – 3 composite materials for phased array ultrasonic transducers,” in: 31st International Spring Seminar on Electronics Technology. IEEE (2008), pp. 255 – 260.

  89. M. Alexandre, et al., “Piezoelectric properties of polymer/lead-free ceramic composites,” Phase Trans., 89(7 – 8), 708 – 716 (2016).

  90. A. Almusallam, et al., “Improving the dielectric and piezoelectric properties of screen-printed Low temperature PZT/polymer composite using cold isostatic pressing,” J. Phys.: Conf. Ser., IOP Publishing, 557(1), 012083 (2014).

    Google Scholar 

  91. B. Satish, K. Sridevi, and M. S. Vijaya, “Study of piezoelectric and dielectric properties of ferroelectric PZT-polymer composites prepared by hot-press technique,” J. Phys. D: Appl. Phys., 35(16), 2048 (2002).

    CAS  Google Scholar 

  92. L. J. Bowen and K.W. French, “Fabrication of piezoelectric ceramic/polymer composites by injection molding,” ISAF’92: Proc. of the 8th IEEE International Symposium on Applications of Ferroelectrics. IEEE (1992), pp. 160 – 163.

  93. S. Gupta, et al., “Cold sintering of PZT 2-2 composites for high frequency ultrasound transducer arrays,” Actuators/Multidisciplinary Digital Publ. Inst., 10(9), 235 (2021).

    Google Scholar 

  94. A. Safari, V. Janas, and R. K. Panda, “Fabrication of fine-scale 1-3 Pb(Zrx, Ti1–x)O3/ceramic/polymer composites using a modified lost mold method,” Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies / International Society for Optics and Photonics, 2721, 251 – 262(1996).

  95. A. Safari, M. Allahverdi, and E K. Akdogan, “Solid freeform fabrication of piezoelectric sensors and actuators,” in: Frontiers of Ferroelectricity, Springer, Boston (2006), pp. 177 – 198.

  96. J. Andrews, D. Button, and I. M. Reaney, “Advances in cold sintering: Improving energy consumption and unlocking new potential in component manufacturing,” Johnson Matthey Tech. Rev., 64(2), 219 – 232 (2020).

    CAS  Google Scholar 

  97. M. Nelo, et al., “Upside-down composites: electroceramics without sintering,” Appl. Mater. Today, 15, 83 – 86 (2019).

    Google Scholar 

  98. M. Nelo, et al., “Upside-down composites: fabricating piezoceramics at room temperature,” J. Eurp. Ceram. Soc., 39(11), 3301 – 3306 (2019).

    CAS  Google Scholar 

  99. T. Siponkoski, et al., “High performance piezoelectric composite fabricated at ultra low temperature,” Composites B: Engineering, 229, 109486 (2022).

    CAS  Google Scholar 

  100. R. Zuo, et al., “Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics,” J. Am. Ceram. Soc., 89(6), 2010 – 2015 (2006).

    CAS  Google Scholar 

  101. T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT,” J. Electroceramics, 19(1), 113 – 126 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Smirnov.

Additional information

Translated from Steklo i Keramika, No. 8, pp. 28 – 42, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V., Kholodkova, A.A., Isachenkov, M.V. et al. Piezo Ceramic Technology for Environmental Impact Mitigation. Glass Ceram 79, 312–322 (2022). https://doi.org/10.1007/s10717-022-00506-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00506-0

Keywords

Navigation