Log in

Sintering of Periclase with Brucite-Aluminum Phosphate Binder

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The sintering kinetics of periclase with brucite-aluminum phosphate binder was studied. A model that takes into account the role of the physical compaction and chemical binding in the presence of a binder during the heating process was used to determine the kinetic parameters. The strength of a conglomerate was due to the sintering itself as well as the action of the binder. The effective energy of activation of the sintering of periclase was determined: Ea = 287 ± 9 kJ/mole, which is close to the activation energy of oxygen diffusion in MgO. Spinel MgAl2O4, which slows the sintering process, forms in the material at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. L. Golynko-Wolfson, M. M. Sychev, and L. G. Sudakas, Chemical Principles of the Technology and Application of Phosphate Bonds and Coatings [in Russian], Khimiya, Leningrad (1968).

    Google Scholar 

  2. L. G. Sudakas, Phosphate Binding Systems [in Russian], RIA Kvintet, St. Petersburg (2006).

    Google Scholar 

  3. A. P. Luz, D. T. Gomes, and V. C. Pandolfelli, “High-alumina phosphate-bonded refractory castables: Al(OH)3 sources and their effects,” Ceram. Int., 41, 9041 – 9050 (2015).

    Article  CAS  Google Scholar 

  4. A. Viani, K. Sotiriadis, P. Sasek, and V.-S. Appoavou, “Evolution of microstructure and performance in magnesium potassium phosphate ceramics: role of sintering temperature of MgO powder,” Ceram. Int., 42, 16310 – 16316 (2016).

    Article  CAS  Google Scholar 

  5. V. A. Abyzov, “Lightweight refractory concrete based on aluminum- magnesium-phosphate binder,” Proc. Eng., 150, 1440 – 1445 (2016).

    Article  CAS  Google Scholar 

  6. Lv, F. T. Wang, L. G. Wang, and E. Ze, “The preparation of phosphate bonding agent and its application in ceramic coating,” Adv. Mat. Res., 821 – 822, 1256 – 1260 (2013).

    Google Scholar 

  7. I. E. Illarionov and I. A. Strelnikov, “Thermal insulation metal phosphate mixtures and methods of their application in foundry production,” Teoriya Tekhnol. Metallurg. Proiz-va, 20(1), 27 – 30 (2017).

    Google Scholar 

  8. I. D. Kashcheeva (ed.), Handbook of Refractories for Industrial Units and Furnaces, Vol. 1, Production of Refractory Materials [in Russian], Intermet Inginiring, Moscow (2000).

  9. D. Mohapatra and D. Sarkar, “Preparation of MgO–MgAl2O4 composite for refractory application,” J. Mater. Proc. Technol., 189(1 – 3), 279 – 283 (2007).

    Article  CAS  Google Scholar 

  10. E. M. M. Ewais, A. Elamir, D. Besisa, et al., “Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes,” J. Alloys Compd., 691, 822 – 833 (2017).

    Article  CAS  Google Scholar 

  11. N. F. Kosenko, N. V. Filatova, and M. A. Glazkov, “Brucite-based magnesium phosphate bonding agent, its analysis and application for periclase sintering,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 6(12), 119 – 124 (2019).

    Article  Google Scholar 

  12. B. R. Vahid and M. Haghighi, “Thermochemical synthesis of Mg–Al ceramic spinel as support for MgO/MgAl2O4 nanocatalyst toward conversion of vegetable oil to green fuel,” Petrol. Res., 28(102), 21 – 23 (2018).

    Google Scholar 

  13. L. B. Horoshavin, V. A. Perepelitsyn, and V. A. Kononov, Handbook of Magnesia Refractories [in Russian], Intermet Inginiring, Moscow (2001).

    Google Scholar 

  14. N. F. Kosenko, N. V. Filatova, and O. P. Denisova, “Simulation of the isothermal sintering process for corundum materials on a chemical bond,” Izv. Vyssh. Uchebn. Zaved., Khim. Khimich. Tekhnol., 47(7), 113 – 116 (2004).

    CAS  Google Scholar 

  15. G. V. Samsonov (ed.), Handbook of the Physicochemical Properties of Oxides [in Russian], Metallurgiya, Moscow (1978).

    Google Scholar 

  16. S. V. Sinel’nikov, V. M. Gropyanov, and V. G. Abakumov, “Kinetics of nonisothermal sintering of magnesium oxide,” J. Appl. Chem., 55(4), 765 – 769 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Filatova.

Additional information

Translated from Steklo i Keramika, No. 9, pp. 16 – 20, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, N.V., Kosenko, N.F. & Glazkov, M.A. Sintering of Periclase with Brucite-Aluminum Phosphate Binder. Glass Ceram 77, 340–343 (2021). https://doi.org/10.1007/s10717-021-00303-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00303-1

Key words

Navigation