Log in

Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake, Egypt based on geospatial analyses

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

Assessing land use/cover (LULC) change in coastal lakes is an essential process for sustainable development. Edku Lake is one of the most important lakes in the northern part of Nile Delta in Egypt. It is directly subject to severe anthropogenic activities. The main objectives of this work were to predict LULC changes within Edku Lake area and to develop a pollution sensitivity model using remote sensing data and modern geographical information system (GIS) techniques. Three Landsat images were acquired in 2000, 2011 and 2018. These images were preprocessed, geo-referenced and prepared for further supervised classification using the maximum likelihood classifier. Five LULC classes were found in the area (water, vegetation, urban, bare and fish farm). CA–Markov model was applied to predict LULC changes using IDRISI software between each two consequent years. A predicted LULC map was obtained for 2025. This map can provide suggestions for future urban and vegetative planning in the studied area. This area was subject to severe changes from 2000 to 2018. Fish farms were significantly increased during this period. The predicted LULC map for 2025 indicates that large vegetative areas will be converted into urban and fish farms. The pollution sensitivity model showed that the eastern parts of the lake are more sensitive to pollution compared with the rest of the lake. Accordingly, protection of biodiversity in Edku Lake can be achieved based on future scenarios and measuring sensitivity of environmental factors and surrounding activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abd El-Hamid, H. T., Hegazy, T. A., Ibrahim, M. S., & El-Moselhy, K. M. (2017). Assessment of water quality of the Northern Delta lakes, Egyptian. Journal of Environmental Sciences, 46(1), 21–34.

    Google Scholar 

  • Badr, N., & Hussein, M. (2010). An input/output flux model of total phosphorous in Lake Edku, a Northern Eutrophic Nile Delta lake. Global Journal of Environmental Research, 4(2), 64–75.

    Google Scholar 

  • Basommi, L. P., Guan, Q. F., Cheng, D., & Singh, S. K. (2016). Dynamics of land use change in a mining area: A case study of Nadowli District, Ghana. Journal of Mountain Science, 13(4), 633–642.

    Article  Google Scholar 

  • Batabyal, A. A., Kahn, J. R., & O’Neill, R. V. (2003). On the scarcity value of ecosystem services. Journal of Environmental Economics and Management, 46(2), 334–352.

    Article  Google Scholar 

  • Beheira Governorate Subdivisions. (2018). CityPopulation.de. Archived from the original on 2018-11-25. Retrieved November 24, 2018.

  • Birks, H. H., Birks, H. J. B., Flower, R. J., Peglar, S. M., & Ramdani, M. (2001). Recent ecosystem dynamics in nine North African lakesin the CASSARINA Projects. Aquatic Ecology, 35(3-4), 461–478.

    Article  Google Scholar 

  • El-Amier, Y. A., El-Alfy, M. A., Haroun, S. A., & Nofal, M. M. (2017). Spatiotemporal assessment of water and sediment quality in Idku Lake, Egypt using multivariate analysis and inverse distance weighting method (GIS Tool). Journal of Environmental Sciences, 46(2), 137–153.

    Google Scholar 

  • El-Amier, Y. A., El-Alfy, M. A., & Nofal, M. (2018). Macrophytes potential for removal of heavy metals from aquatic ecosystem, Egypt: Using metal accumulation index (MAI). Plant Archives, 18(2), 2134–2144.

    Google Scholar 

  • El Batrawy, O. A., Abdel Wahaab, R., Ibrahiem, M. S., Soliman, S. S., & Yehia, A. G. (2018). Future perspective for water scarcity challenges in Northern Nile Delta: Desalination opportunities. Middle East Journal of Applied Sciences, 8(04), 1094–1111.

    Google Scholar 

  • El-Hamid, H. T. A., Caiyong, W., & Yongting, Z. (2019). Geospatial analysis of land use driving force in coal mining area: Case study in Ningdong China. GeoJournal, 78(4). https://doi.org/10.1007/s10708-019-10078-2.

  • Fang, J., & Liao, Z. D. (2014). Forestry landscape patterns changes and dynamic simulation of Nanling National Nature Reserve, Guangdong. Sciatica Geographic Sinica, 34(9), 1099–1107.

    Google Scholar 

  • Galicia, L., & Garcia-Romero, A. (2007). Land use and land cover change in highland temperate forests in the Izta-Popo National Park, Central Mexico. Mountain Research and Development, 27(1), 48–57.

    Article  Google Scholar 

  • Gupta, S., Chabukdhara, M., Kumar, P., Singhand, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: A biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55.

    Article  Google Scholar 

  • He, D., Zhou, J., Gao, W., Guo, H. Y. U. S., & Liu, Y. (2014). An integrated CA–markov model for dynamic simulation of land use change in Lake Dianchi watershed. Bei**g Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 50(6), 1095–1105.

    Google Scholar 

  • Hyandye, C., & Martz, L. W. A. (2017). Markov and cellular automata land-use change predictive model of the Usangu Catchment. International Journal of Remote Sensing, 38(1), 64–81.

    Article  Google Scholar 

  • Jiyuan, L. (1992). Land use in Tibet autonomous region (pp. 1–60). Bei**g: Science Press.

    Google Scholar 

  • Khalil, M. T. (2018). Physical and chemical properties of Egypt’s Coastal Wetlands; Burullus Wetland as a case study. In A. Negm, M. Bek, & S. Abdel-Fattah (Eds.), Egyptian coastal lakes and wetlands: Part I. The handbook of environmental chemistry (p. 71). Cham: Springer.

    Google Scholar 

  • Landis, R. J., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  Google Scholar 

  • Lu, D., Li, G., & Moran, E. (2014). Current situation and needs of change detection techniques. International Journal of Image and Data Fusion, 5(1), 13–38.

    Article  Google Scholar 

  • Ma, C., Zhang, G. Y., Zhang, X. C., Zhao, Y. J., & Li, H. Y. (2012). Application of Markov model in wetland change dynamics in Tian** Coastal Area, China.The 18th Biennial Conference of International Society for Ecological Modelling. Procedia Environmental Sciences, 13, 252–262.

    Article  Google Scholar 

  • Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences, 9(4), 249.

    Article  Google Scholar 

  • Mustafa, E. K., Liu, G., El-Hamid H. T. A., & Kaloop, M. R. (2019). Simulation of land use dynamics and its impact on land surface temperature in Bei**g using satellite data. GeoJournal, 1–19.

  • Nguyen, T. A., Le, P. M. T., Pham, T. M., Hoang, H. T. T., Nguyen, M. Q., & Ta, H. Q. (2017). Toward a sustainable city of tomorrow: A hybrid Markov–Cellular automata modeling for urban landscape evolution in the Hanoi city (Vietnam) during 1990–2030. Environment, Development and Sustainability, 21, 429–446. https://doi.org/10.1089/sus.2017.29092.aml

    Article  Google Scholar 

  • Okbah, M. A., & El-Gohary, S. E. (2002). Physical and chemical characteristics of Edku Lake Water, Egypt. Mediterranean Marine Science, 3(2), 27–39.

    Article  Google Scholar 

  • Radwan, A. M., Abdelmoneim, M. A., Basiony, A. I., & El-Alfy, M. A. (2019). Water pollution monitoring in Idku Lake (Egypt) using phytoplankton and NSF-WQI. Egyptian Journal of Aquatic Biology & Fisheries, 23(4), 465–481.

    Article  Google Scholar 

  • Rai, S. C., Sharma, E., & Sundriyal, R. C. (1994). Conservation in the Sikkim Himalaya: Traditional knowledge and land-use of the Mamlay watershed. Environmental Conservation, 21(1), 30–34.

    Article  Google Scholar 

  • Sheela, A. M., Letha, J., Joseph, S., Ramachandran, K. K., & Justus, J. (2013). Assessment of pollution status of a coastal lake system using satellite imagery. Journal of Geophysics & Remote Sensing, 2(1): 1-11. https://doi.org/10.4172/2169-0049.1000110.

    Article  Google Scholar 

  • Siam, E., & Ghobrial, M. (2000). Pollution influence on bacterial abundance and chlorophyll-a concentration case study at Idku Lagoon. Scienta Marina, 64(1), 1–8.

    Google Scholar 

  • Singh, S. K., Laari, P. B., Mustak, S. K., Srivastava, P. K., & Szabó, S. (2018). Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto International, 33(11), 1202–1222.

    Article  Google Scholar 

  • Sisi, X., Chunxi, W., & **yu, C. (2012). Analysis of land use change and driving factors in Taihu Lake Region: 1980 to 2005. Journal of Agricultural Engineering, 28(23), 1–2.

    Google Scholar 

  • Sohl, T. L., & Claggett, P. R. (2013). Clarity versus complexity: Land-use modeling as a practical tool for decision-makers. Journal of Environmental Management, 129, 235–243.

    Article  Google Scholar 

  • USEPA. (2000). A retrospective assessment of the costs of the clean water act: 1972 to 1997. Washington DC: US Environ. Protection agency contract number 67-W7-0018, 2000.

  • Verburg, P. H., Neumann, K., & No, L. (2011). Challenges in using land use and land cover data for global change studies: Land use and land cover data for global change studies. Global Change Biology, 17(2), 974.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Yang, A., & Sun, G. (2017). Landsat-based land cover change in the Bei**g–Tian**–Tangshan urban agglomeration in 1990, 2000 and 2010. ISPRS International Journal of Geo-Information, 6(3), 59.

    Article  Google Scholar 

  • Zhao, L., & Peng, Z. R. (2012). An agent-based cellular automata model of land use change developed for transportation analysis. Journal of Transport Geography, 25, 35–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. El-Alfy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Hamid, H.T., El-Alfy, M.A. & Elnaggar, A.A. Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake, Egypt based on geospatial analyses. GeoJournal 86, 1895–1913 (2021). https://doi.org/10.1007/s10708-020-10167-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-020-10167-7

Keywords

Navigation