Log in

The yellow catfish, Pelteobagrus fulvidraco (Siluriformes) metallothionein cDNA: molecular cloning and transcript expression level in response to exposure to the heavy metals Cd, Cu, and Zn

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Metallothionein (MT) has been used extensively as a potential molecular biomarker to detect heavy metal pollution in aquatic organisms. In order to investigate the modulation effect of heavy metals and to establish suitable biomarkers for the monitoring of heavy metal pollution, Pelteobagrus fulvidraco metallothionein gene was characterized as the first report in the family Bagridae. Pf-MT transcript was detected at high levels in liver, gonad, kidney, and brain compared to other tissues. A time-course study in response to waterborne Cd (5 ppm) revealed that a significant increase in the Pf-MT transcript abundance was observed at 6 h in gill, kidney, and liver. These elevated levels were kept for 96 h, implying that Cd distributed fast into different organs and was involved in the tissue-specific induction pattern. We observed a significant Pf-MT transcript increase in liver tissues at 48 h, followed by gill at 12 h and intestine at 48 h after Cd exposure. This indicates hepatic MT expression as a potential biomarker of acute Cd exposure in this species. Cd-binding ability of recombinant Pf-MT protein provided evidence for sensitivity to Cd and other heavy metal exposure. In the case of Zn exposure (1 ppm), a significant increase in Pf-MT transcript abundance was observed at 12 h, and a peak induction level reaching sixfold at 24 h was kept until 48 h, showing similar transcript induction patterns with Cd. A high level of Pf-MT mRNA after exposure to Cu (1 ppm) was observed at 12 h that gradually increased until 96 h with a 12-fold induction, revealing a long-lasting induction and somewhat dissimilar pattern compared to other metals in liver. Our results demonstrate that Pf-MT can be induced by heavy metals in a tissue-specific and metal-specific manner and plays probably a conserved role in metal detoxification. This study provides new information on P. fulvidraco metallothionein gene for the use of biomarkers indicating metal pollution in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    Article  PubMed  CAS  Google Scholar 

  • Atif F, Kaur M, Yousuf S, Raisuddin S (2006) In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch. Chem-Biol Interact 162:172–180

    Article  PubMed  CAS  Google Scholar 

  • Atif F, Kaur M, Ansari RA, Raisuddin S (2008) Channa punctata brain metallothionein is a potent scavenger of superoxide radicals and prevents hydroxyl radical-induced in vitro DNA damage. J Biochem Mol Toxicol 22:202–208

    Article  PubMed  CAS  Google Scholar 

  • Atli G, Canli M (2003) Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bull Environ Contam Toxicol 70:619–627

    Article  PubMed  CAS  Google Scholar 

  • Atli G, Canli M (2008) Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environ Toxicol Pharmacol 25:33–38

    Article  PubMed  CAS  Google Scholar 

  • Bae H, Nam SS, Park HS, Park K (2005) Metallothionein mRNA sequencing and induction by cadmium in gills of the crucian carp, Carassius auratus. J Health Sci 51:284–290

    Article  CAS  Google Scholar 

  • Baykan U, Atli G, Canli M (2007) The effects of temperature and metal exposures on the profiles of metallothionein-like proteins in Oreochromis niloticus. Environ Toxicol Pharmacol 23:33–38

    Article  PubMed  CAS  Google Scholar 

  • Burgess D, Frerichs N, George S (1993) Control of metallothionein expression by hormones and stressors in cultured fish cell lines. Mar Environ Res 35:25–28

    Article  CAS  Google Scholar 

  • Ceyhun SB, Aksakal E, Ekinci D, Erdogan O, Beydemir S (2011) Influence of cobalt and zinc exposure on mRNA expression profiles of metallothionein and cytocrome P450 in rainbow trout. Biol Trace Elem Res 144:781–789

    Article  PubMed  CAS  Google Scholar 

  • Chen QL, Luo Z, Zheng JL, Li XD, Liu CX, Zhao YH, Gong Y (2012) Protective effects of calcium on copper toxicity in Pelteobagrus fulvidraco: Copper accumulation, enzymatic activities, histology. Ecotoxicol Environ Saf 76:126–134

    Article  PubMed  CAS  Google Scholar 

  • Cheung AP, Lam TH, Chan KM (2004) Regulation of tilapia metallothionein gene expression by heavy metal ions. Mar Environ Res 58:389–394

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Lee SY, Kim KY, Bang IC, Kim DS, Nam YK (2008) Gene structure and expression of metallothionein during metal exposures in Hemibarbus mylodon. Ecotoxicol Environ Saf 71:125–137

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury MJ, McDonald DG, Wood CM (2004) Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium. Aquat Toxicol 69:149–163

    Google Scholar 

  • Chowdhury MJ, Baldisserotto B, Wood CM (2005) Tissue-specific cadmium and metallothionein levels in rainbow trout chronically acclimated to waterborne or dietary cadmium. Arch Environ Contam Toxicol 48:381–390

    Article  PubMed  CAS  Google Scholar 

  • Dang Z, Lock RA, Flik G, Wendlelaar Bonga SE (1999) Metallothionein response in gills of Oreochromis mossambicus exposed to copper in fresh water. Am J Physiol 277:R320–R331

    PubMed  CAS  Google Scholar 

  • De Boeck G, Ngo T, Van Campenhout K, Blust R (2003) Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat Toxicol 65:413–424

    Article  PubMed  Google Scholar 

  • De Smet H, De Wachter B, Lobinski R, Blust R (2001) Dynamics of (Cd, Zn)-metallothioneins in gills, liver and kidney of common carp Cyprinus carpio during cadmium exposure. Aquat Toxicol 52:269–281

    Article  PubMed  Google Scholar 

  • dos Santos Carvalho C, de Araujo HS, Fernandes MN (2004) Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH 4.5 and pH 8.0. Comp Biochem Physiol B 137:225–234

    Article  PubMed  Google Scholar 

  • Eroglu K, Atli G, Canli M (2005) Effects of metal (Cd, Cu, Zn) interactions on the profiles of metallothionein-like proteins in the Nile fish Oreochromis niloticus. Bull Environ Contam Toxicol 75:390–399

    Article  PubMed  CAS  Google Scholar 

  • Filipovic V, Raspor B (2003) Metallothionein and metal levels in cytosol of liver, kidney and brain in relation to growth parameters of Mullus surmuletus and Liza aurata from the Eastern Adriatic sea. Water Res 37:3253–3262

    Article  PubMed  CAS  Google Scholar 

  • Gao D, Wang GT, Chen XT, Nie P (2009) Metallothionein-2 gene from the mandarin fish Siniperca chuatsi: cDNA cloning, tissue expression, and immunohistochemical localization. Comp Biochem Physiol C149:18–25

    Google Scholar 

  • Hansen BH, Rømma S, Garmo ØA, Pedersen SA, Olsvik PA, Andersen RA (2007) Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere 67:2241–2249

    Article  PubMed  CAS  Google Scholar 

  • Harrison S, Klaverkamp J (1989) Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri Richardson) and lake whitefish (Coregonus clupeaformis Mitchill). Environ Toxicol Chem 8:87–97

    CAS  Google Scholar 

  • Hashemi S, Kunwar PS, Blust R, De Boeck G (2008) Differential metallothionein induction patterns in fed and starved carp (Cyprinus carpio) during waterborne copper exposure. Environ Toxicol Chem 27:2154–2158

    Article  PubMed  CAS  Google Scholar 

  • Hayes RA, Regondi S, Winter MJ, Butler PJ, Agradi E, Taylor EW, Chipman JK (2004) Cloning of a chub metallothionein cDNA and development of competitive RT-PCR of chub metallothionein mRNA as a potential biomarker of heavy metal exposure. Mar Environ Res 58:665–669

    Article  PubMed  CAS  Google Scholar 

  • He P, Xu M, Ren H (2007) Cloning and functional characterization of 5′-upstream region of metallothionein-I gene from crucian carp (Carassius cuvieri). Int J Biochem Cell Biol 39:832–841

    Article  PubMed  CAS  Google Scholar 

  • Hermesz E, Abraham M, Nemcsok JA (2001) Tissue-specific expression of two metallothionein genes in common carp during cadmium exposure and temperature shock. Comp Biochem Physiol C 128:457–465

    CAS  Google Scholar 

  • Hollis L, Hogstrand C, Wood CM (2001) Tissue-specific cadmium accumulation, metallothionein induction, and tissue zinc and copper levels during chronic sublethal cadmium exposure in juvenile rainbow trout. Arch Environ Contam Toxicol 41:468–474

    Article  PubMed  CAS  Google Scholar 

  • Holsbeek L, Das HK, Joiris CR (1997) Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. Sci Total Environ 198:201–210

    Article  PubMed  CAS  Google Scholar 

  • Kille P, Winge DR, Harwood JL, Kay J (1991) A plant metallothionein produced in E coli. FEBS Lett 295:171–175

    Article  PubMed  CAS  Google Scholar 

  • Kim J-H, Hwang D-S, Son K-H, Raisuddin S, Ki J-S, Lee J-S, Han K-N (2008a) cDNA cloning and expression of a xenobiotic metabolizing cytochrome P4501A (CYP1A) from the yellow catfish, Pelteobagrus fulvidraco (Siluriformes). Environ Toxicol 23:346–353

    Article  PubMed  CAS  Google Scholar 

  • Kim J-H, Wang S-Y, Kim I-C, Ki J-S, Raisuddin S, Lee J-S, Han K-N (2008b) Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere 71:1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Kito H, Ose Y, Mizuhira V, Sato T, Ishikawa T, Tazawa T (1982) Separation and purification of (Cd, Cu, Zn)-metallothionein in carp hepato-pancreas. Comp Biochem Physiol C 73:121–127

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  PubMed  CAS  Google Scholar 

  • Klavercamp J, McDonald W, Duncan D, Wagenann R (1984) Metallothionein and acclimation to heavy metals in fish: a review. Wiley, New York

    Google Scholar 

  • Knapen D, Reynders H, Bervoets L, Verheyen E, Blust R (2007) Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. Aquat Toxicol 82:163–172

    Article  PubMed  CAS  Google Scholar 

  • Lange A, Ausseil O, Segner H (2002) Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comp Biochem Physiol C 131:231–243

    Google Scholar 

  • Ley HL 3rd, Failla ML, Cherry DS (1983) Isolation and characterization of hepatic metallothionein from rainbow trout (Salmo gairdneri). Comp Biochem Physiol B 74:507–513

    PubMed  Google Scholar 

  • Linde AR, Sánchez-Galán S, Klein D, García-Vázquez E, Summer KH (1999) Metallothionein and heavy metals in brown trout (Salmo trutta) and European eel (Anguilla anguilla): a comparative study. Ecotoxicol Environ Saf 44:168–173

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mayer GD, Leach A, Kling P, Olsson PE, Hogstrand C (2003) Activation of the rainbow trout metallothionein-A promoter by silver and zinc. Comp Biochem Physiol B 134:181–188

    Article  PubMed  Google Scholar 

  • Nair M, Jayalakshmy K, Balachandran K, Joseph T (2006) Bioaccumulation of toxic metals by fish in a semi-enclosed tropical ecosystem. Environ Forensics 7:197–206

    Article  CAS  Google Scholar 

  • Oliveira M, Serafim A, Bebianno MJ, Pacheco M, Santos MA (2008) European eel (Anguilla anguilla L.) metallothionein, endocrine, metabolic and genotoxic responses to copper exposure. Ecotoxicol Environ Saf 70:20–26

    Article  PubMed  CAS  Google Scholar 

  • Olsson PE, Kling P, Petterson C, Silversand C (1995) Interaction of cadmium and oestradiol-17 beta on metallothionein and vitellogenin synthesis in rainbow trout (Oncorhynchus mykiss). Biochem J 307:197–203

    PubMed  CAS  Google Scholar 

  • Overnell J, Berger C, Wilson K (1981) Partial amino acid sequence of metallothionein from the plaice (Pleuronectes platessa). Biochem Soc Trans 9:217–218

    CAS  Google Scholar 

  • Podrug M, Raspor B (2009) Seasonal variation of the metal (Zn, Fe, Mn) and metallothionein concentrations in the liver cytosol of the European chub (Squalius cephalus L.). Environ Monit Assess 157:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ren H, Xu M, He P, Muto N, Itoh N, Tanaka K, **ng J, Chu M (2006) Cloning of crucian carp (Carassius cuvieri) metallothionein-II gene and characterization of its gene promoter region. Biochem Biophys Res Commun 342:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Rhee J-S, Raisuddin S, Lee K-W, Seo JS, Ki J-S, Kim I-C, Park HG, Lee J-S (2009a) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C 149:104–112

    Google Scholar 

  • Rhee J-S, Raisuddin S, Hwang D-S, Lee K-W, Kim I-C, Lee J-S (2009b) Differential expression of metallothionein (MT) gene by trace metals and endocrine-disrupting chemicals in the hermaphroditic mangrove killifish, Kryptolebias marmoratus. Ecotoxicol Environ Saf 72:206–212

    Article  PubMed  CAS  Google Scholar 

  • Roesijadi G (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol C 113:117–123

    Google Scholar 

  • Roesijadi G, Rezvankhah S, Perez-Matus A, Mitelberg A, Torruellas K, Van Veld PA (2009) Dietary cadmium and benzo(a)pyrene increased intestinal metallothionein expression in the fish Fundulus heteroclitus. Mar Environ Res 67:25–30

    Article  PubMed  CAS  Google Scholar 

  • Stillman MJ, Cai W, Zelazowski AJ (1987) Cadmium binding to metallothionein. J Biol Chem 262:4538–4548

    PubMed  CAS  Google Scholar 

  • Syasina IG (2011) Characteristics of histopathological changes in organs of banded catfish Pelteobagrus fulvidraco (Bagridae) from the Amur River basin. J Ichthyol 51:263–276

    Article  Google Scholar 

  • Thirumoorthy N, Kumar KTM, Sundar AS, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996

    PubMed  CAS  Google Scholar 

  • Van Cleef-Toedt KA, Kaplan LAE, Crivello JF (2001) Killifish metallothionein messenger RNA expression following temperature perturbation and cadmium exposure. Cell Stress Chaperones 6:351–359

    Article  PubMed  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • van Heerden D, Vosloo A, Nikinmaa M (2004) Effects of short-term copper exposure on gill structure, metallothionein and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 69:271–280

    Google Scholar 

  • Velma V, Tchounwou PB (2011) Hexavalent chromium-induced multiple biomarker responses in liver and kidney of goldfish, Carassius auratus. Environ Toxicol 26:649–656

    Article  PubMed  CAS  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417

    PubMed  CAS  Google Scholar 

  • Wangsongsak A, Utarnpongsa S, Kruatrachue M, Ponglikitmongkol M, Pokethitiyook P, Sumranwanich T (2007) Alterations of organ histopathology and metallothionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure. J Environ Sci 19:1341–1348

    Article  CAS  Google Scholar 

  • Weber DN, Eisch S, Spieler RE, Petering DH (1992) Metal redistribution in largemouth bass (Micropterus salmoides) in response to restrainment stress and dietary cadmium: role of metallothionein and other metal-binding proteins. Comp Biochem Physiol C 101:255–262

    Article  PubMed  CAS  Google Scholar 

  • Werner J, Wautier K, Evans RE, Baron CL, Kidd K, Palace V (2003) Waterborne ethynylestradiol induces vitellogenin and alters metallothionein expression in lake trout (Salvelinus namaycush). Aquat Toxicol 62:321–328

    Article  PubMed  CAS  Google Scholar 

  • Werner J, Palace V, Baron C, Shiu R, Yarmill A (2008) A real-time PCR method for the quantification of the two isoforms of metallothionein in Lake Trout (Salvelinus namaycush). Arch Environ Contam Toxicol 54:84–91

    Article  PubMed  CAS  Google Scholar 

  • Woo S, Yum S, Jung J, Shim W, Lee C-H, Lee T-K (2006) Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus. Mar Biotechnol 8:654–662

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Ho YC, Shih MJ (2007) Effects of Ca2+ or Na+ on metallothionein expression in tilapia larvae (Oreochromis mossambicus) exposed to cadmium or copper. Arch Environ Contam Toxicol 52:229–234

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Lin HC, Yang WL (2008) The effects of maternal Cd on the metallothionein expression in tilapia (Oreochromis mossambicus) embryos and larvae. Aquat Toxicol 87:296–302

    Article  PubMed  CAS  Google Scholar 

  • **e L, Klerks PL (2004) Metallothionein-like protein in the least killifish Heterandria formosa and its role in cadmium resistance. Environ Toxicol Chem 23:173–177

    Article  PubMed  CAS  Google Scholar 

  • Yan CHM, Chan KM (2004) Cloning of zebrafish metallothionein gene and characterization of its gene promoter region in HepG2 cell line. Biochim Biophys Acta 1679:47–58

    Article  PubMed  CAS  Google Scholar 

  • Yeiser EC, Fitch CA, Horning MS, Rutkoski N, Levenson CW (1999) Regulation of metallothionein-3 mRNA by thyroid hormone in develo** rat brain and primary cultures of rat astrocytes and neurons. Brain Res Dev Brain Res 115:195–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Eco-Technopia 21 (2009) funded to Jae-Seong Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Seong Lee.

Additional information

**-Hyoung Kim and Jae-Sung Rhee equally contributed to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10695_2012_9621_MOESM1_ESM.ppt

Fig. S1. Phylogenetic analysis of overall amino acid sequences of Pf-MT. A maximum parsimony tree was inferred from the amino acid alignments of the indicated proteins with the neighbor joining method. Numbers at branch points are bootstrap values based on 1000 samplings. This topology represents the bootstrap consensus tree. Sequences and GeneBank accession numbers are as follows. Chaenocephalus aceratus, Z72483; Parachaenichthys charcoti, AJ007950; Trematomus bernacchii, AJ011585; Oreochromis mossambicus, S75042; Liza aurata, U93207; Pseudopleuronectes americanus, X13594; Paralichthys olivaceus, EF406132; Tetraodon nigroviridis, GSTENG00016789001; Takifugu obscurus, EF622234; Gadus morhua, U08105; Oryzias javanicus, AY906860; Oryzias latipes, AY466516; Oncorhynchus mykiss, X59394; Salvelinus alpinus, AY267819; Esox lucius, X59392; Danio rerio, NM _ 194273; Carassius auratus, X97271; Cyprinus carpio, AF002161; Anguilla anguilla, DQ493910; Ictalurus punctatus, AF087935. Mammalian MT-1A of human (NM _ 005946) is used as outgroup (PPT 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Rhee, JS., Dahms, HU. et al. The yellow catfish, Pelteobagrus fulvidraco (Siluriformes) metallothionein cDNA: molecular cloning and transcript expression level in response to exposure to the heavy metals Cd, Cu, and Zn. Fish Physiol Biochem 38, 1331–1342 (2012). https://doi.org/10.1007/s10695-012-9621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9621-5

Keywords

Navigation