Log in

Improving the Fire Performance of Structural Insulated Panel Core Materials with Intumescent Flame-Retardant Epoxy Resin Adhesive

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The effects of adhesive (layer) on fire performances of structural insulated panel (SIP) have been mostly ignored. This research studied modifications to the epoxy resin adhesive (EA) with expandable graphite (EG), ammonium polyphosphate (APP) and calcium carbonate (CaCO3) to prepare an intumescent flame-retardant epoxy resin adhesive (FREA) which was applied to expanded polystyrene (EPS), a typical core material of SIPs. It was found that the FREA had a char yield of 33% which was 7.6 times of that of EA and a higher viscosity than EA. The limiting oxygen index reached a maximum of 37.7% and UL94 passed the V-0 rating when the EPS was coated with FREA, of which the fire performance was even better than flame-retardant EPS. Additionally, the heat release rate, production rates of CO, CO2 and soot and sample back temperatures were all reduced compared to the EPS coated with EA. Avoiding the sample surface recession in the cone calorimeter, the custom-made spray gun system proves that the FREA can significantly increase the ignition time and lead to self-extinguishment. The degradation products of APP crosslink with CaCO3 to produce phosphates which bond with expanded EG forming the char layer to prevent heat and flame. The use of flame-retardant adhesives can lead to a sufficient fire safety level for the core material without affecting its functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Mak K, Fam A (2019) Performance of flax-FRP sandwich panels exposed to different ambient temperatures. Constr Build Mater 219:121–130. https://doi.org/10.1016/j.conbuildmat.2019.05.118

    Article  Google Scholar 

  2. Meng Q, Hao H, Chen W (2016) Laboratory test and numerical study of structural insulated panel strengthened with glass fibre laminate against windborne debris impact. Constr Build Mater 114:434–446. https://doi.org/10.1016/j.conbuildmat.2016.03.190

    Article  Google Scholar 

  3. Panjehpour M, Ali AAA, Voo YL (2013) Structural Insulated Panels: past, present, and future. J Eng Proj Prod Manag 3(1):2–8. https://doi.org/10.32738/JEPPM.201301.0002

    Article  Google Scholar 

  4. Rungthonkit P (2012) Structural behaviour of structural insulated panels (SIPS). Dissertation, University of Birmingham

  5. Chen W, Hao H (2015) Performance of structural insulated panels with rigid skins subjected to windborne debris impacts—Experimental investigations. Constr Build Mater 77:241–252. https://doi.org/10.1016/j.conbuildmat.2014.12.112

    Article  Google Scholar 

  6. Bregulla J (2003) Investigation into the fire and racking behaviour of structural sandwich panel walls. Dissertation, University of Surrey

  7. Hopkin DJ, Lennon T, El-Rimawi J, Silberschmidt V (2011) Full-scale natural fire tests on gypsum lined structural insulated panel (SIP) and engineered floor joist assemblies. Fire Saf J 46(8):528–542. https://doi.org/10.1016/j.firesaf.2011.07.009

    Article  Google Scholar 

  8. Lee HJ, Nah HS, Lee CH, Choi SM (2012) Fire resistance performance and thermal performance evaluation of structural insulated panels for low-energy houses. J Korean Soc Adv Comput Struct 3(2):36–46. https://doi.org/10.11004/kosacs.2012.3.2.036

    Article  Google Scholar 

  9. Murillo AM, Abisambra GV, Acosta PA, Quesada QC, Tutikian BF, Ehrenbring HZ (2021) Comparison of the fire resistance behaviour of structural insulated panels with expanded polystyrene core treated with intumescent coating. J Mater Res Technol 12:1958–69. https://doi.org/10.1016/j.jmrt.2021.03.079

    Article  Google Scholar 

  10. Wessies SS, Chang MK, Marr KC, Ezekoye OA (2019) Experimental and analytical characterization of firebrand ignition of home insulation materials. Fire Technol 55(3):1027–1056. https://doi.org/10.1007/s10694-019-00818-8

    Article  Google Scholar 

  11. Collier PCR, Baker GB (2011) The influence of construction detailing on the fire performance of polystyrene insulated panels. Fire Technol 49(2):195–211. https://doi.org/10.1007/s10694-011-0238-5

    Article  Google Scholar 

  12. Zou Y, Li Y, Bourbigot S, Zhang J, Guo Y, Li K et al (2021) Determination of solid-phase reaction mechanism and chlorine migration behavior of co-pyrolyzing PVC CaCO3 based polymer using temperature-dependent FTIR and XRD analysis. Polym Degrad Stabil 193:109741. https://doi.org/10.1016/j.polymdegradstab.2021.109741

    Article  Google Scholar 

  13. Nishio Y, Yoshioka H, Noguchi T, Kanematsu M, Ando T, Hase Y et al (2015) Fire spread caused by combustible facades in Japan. Fire Technol 52(4):1081–1106. https://doi.org/10.1007/s10694-015-0535-5

    Article  Google Scholar 

  14. He X, Wang J, Fang J (2021) Flammability limits and near-limit chemistry controlled flame spread over thermally thin paper under sub-atmospheric pressure. Fire Saf J 120:103042. https://doi.org/10.1016/j.firesaf.2020.103042

    Article  Google Scholar 

  15. Wang G, Xue C, Liu P, Bai S (2016) Flame-retardant mechanism of expandable polystyrene foam with a macromolecular nitrogen–phosphorus intumescent flame retardant. J Appl Polym Sci 134(1):44356. https://doi.org/10.1002/app.44356

    Article  Google Scholar 

  16. Zhang S, Ji W, Han Y, Gu X, Li H, Sun J (2018) Flame-retardant expandable polystyrene foams coated with ethanediol-modified melamine-formaldehyde resin and microencapsulated ammonium polyphosphate. J Appl Polym Sci 135(28):46471. https://doi.org/10.1002/app.46471

    Article  Google Scholar 

  17. Ji WF, Wang D, Guo J, Fei B, Gu XY, Li HF et al (2020) The preparation of starch derivatives reacted with urea-phosphoric acid and effects on fire performance of expandable polystyrene foams. Carbohydr Polym 233:115841. https://doi.org/10.1016/j.carbpol.2020.115841

    Article  Google Scholar 

  18. Modesti M, Lorenzetti A, Simioni F, Checchin M (2001) Influence of different flame retardants on fire behaviour of modified PIR/PUR polymers. Polym Degrad Stabil 74(3):475–479. https://doi.org/10.1016/S0141-3910(01)00171-9

    Article  Google Scholar 

  19. Modesti M, Lorenzetti A (2003) Improvement on fire behaviour of water blown PIR-PUR foams: use of an halogen-free flame retardant. Eur Polym J 39(2):263–268. https://doi.org/10.1016/S0014-3057(02)00198-2

    Article  Google Scholar 

  20. Khan AA, Lin S, Huang X, Usmani A (2021) Facade fire hazards of bench-scale aluminum composite panel with flame-retardant core. Fire Technol. https://doi.org/10.1007/s10694-020-01089-4

    Article  Google Scholar 

  21. Wang P, Chen L, **ao H (2019) Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. J Anal Appl Pyrolysis 139:104–113. https://doi.org/10.1016/j.jaap.2019.01.015

    Article  Google Scholar 

  22. Ozkaya K, Cemil Ilce A, Burdurlu E, Aslan S (2007) The effect of potassium carbonate, borax and wolmanit on the burning characteristics of oriented strandboard (OSB). Constr Build Mater 21(7):1457–1462. https://doi.org/10.1016/j.conbuildmat.2006.07.001

    Article  Google Scholar 

  23. Shao X, Du Y, Zheng X, Wang J, Wang Y, Zhao S et al (2020) Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings. J Mater Sci 55(17):7555–7572. https://doi.org/10.1007/s10853-020-04548-z

    Article  Google Scholar 

  24. Kong QH, Wu T, Zhang J, Wang DY (2018) Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol 154:136–144. https://doi.org/10.1016/j.compscitech.2017.10.013

    Article  Google Scholar 

  25. Wang X, Zhou S, Guo WW, Wang PL, **ng W, Song L et al (2017) Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustain Chem Eng 5(4):3409–3416. https://doi.org/10.1021/acssuschemeng.7b00062

    Article  Google Scholar 

  26. Wang X, Ling S, Guan K, Luo X, Chen L, Han J et al (2019) Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl ethane (dbdpe), a novel brominated flame retardant, in zebrafish larvae. Environ Sci Technol 53(14):8437–8446. https://doi.org/10.1021/acs.est.9b02831

    Article  Google Scholar 

  27. Xu YJ, Chen L, Rao WH, Qi M, Guo DM, Liao W et al (2018) Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem Eng J 347:223–232. https://doi.org/10.1016/j.cej.2018.04.097

    Article  Google Scholar 

  28. Yang G, Wu WH, Wang YH, Jiao YH, Lu LY, Qu HQ et al (2019) Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin. J Hazard Mater 366(3):78–87. https://doi.org/10.1016/j.jhazmat.2018.11.093

    Article  Google Scholar 

  29. Li R, Zhang H, Zhou C, Zhang B, Chen Y, Zou H et al (2017) The thermal stability investigation of microencapsulated ammonium polyphosphate/siloxane-modified epoxy resin composites. J Appl Polym Sci 3:45272. https://doi.org/10.1002/app.45272

    Article  Google Scholar 

  30. Shi YQ, Yu B, Zheng YY, Guo J, Chen BH, Pan ZM et al (2018) A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym Adv Technol 29(4):1242–1254. https://doi.org/10.1002/pat.4235

    Article  Google Scholar 

  31. Li J, Wang H, Li S (2019) A novel phosphorussilicon containing epoxy resin with enhanced thermal stability, flame retardancy and mechanical properties. Polym Degrad Stabil 164(6):36–45. https://doi.org/10.1016/j.polymdegradstab.2019.03.020

    Article  Google Scholar 

  32. Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind Eng Chem Res 50(13):7772–83. https://doi.org/10.1021/ie200152x

    Article  Google Scholar 

  33. Huang Y, Yang Y, Ma J, Yang J (2018) Preparation of ferric phosphonate/phosphinate and their special action on flame retardancy of epoxy resin. J Appl Polym Sci 135(25):46206. https://doi.org/10.1002/app.46206

    Article  Google Scholar 

  34. Zhang J, Kong Q, Wang DY (2018) Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A 10(3):1–11. https://doi.org/10.1039/C7TA10961J

    Article  Google Scholar 

  35. Tian X, Wang Z, Yu Q, Wu Q, Gao J (2014) Synthesis and property of flame retardant epoxy resins modified with 2-(diphenylphosphinyl)-1, 4-benzenediol. Chem Res Chin Univ 30(5):868–873. https://doi.org/10.1007/s40242-014-4031-0

    Article  Google Scholar 

  36. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy task. Angew Chemie Int Ed 57(33):10450–10467. https://doi.org/10.1002/anie.201711735

    Article  Google Scholar 

  37. Back JH, Baek D, Kim T, Seo B, Lee W, Kim HJ (2020) Synthesis of phosphorus-containing polyol and its effects on impact resistance and flame retardancy of structural epoxy adhesives. Int J Adhes Adhes 100:102601. https://doi.org/10.1016/j.ijadhadh.2020.102601

    Article  Google Scholar 

  38. American Society for Testing and Materials (ASTM), Standard D 2863 (2017) Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)

  39. American Society for Testing and Materials (ASTM), Standard D 3801 (2019) Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position

  40. International Organization for Standardization (ISO), Standard 5660–1 (2015) Reaction-to-fire tests - Heat release, smoke production and mass loss rate - Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement)

  41. Tang P, Zhao Y, **a F (2008) Thermal behaviors and heavy metal vaporization of phosphatized tannery sludge in incineration process. J Environ Sci 20(9):1146–1152. https://doi.org/10.1016/s1001-0742(08)62162-2

    Article  Google Scholar 

  42. Wang C, Zhang JL, Wang GW, Jiao KX, Liu ZJ, Chou KC (2017) Combustion characteristics and kinetics of anthracite with added chlorine. Int J Miner Metall Mater 24(07):745–755. https://doi.org/10.1007/s12613-017-1458-6

    Article  Google Scholar 

  43. Duquesne S, Bras ML, Bourbigot S, Delobel R, Roels T (2003) Expandable graphite: a fire retardant additive for polyurethane coatings. Fire Mater 27(3):103–117. https://doi.org/10.1002/fam.812

    Article  Google Scholar 

  44. Chiang C, Hsu S (2010) Synthesis, characterization and thermal properties of novel epoxy/expandable graphite composites. Polym Int 59(1):119–126. https://doi.org/10.1002/pi.2699

    Article  Google Scholar 

  45. Awad WH, Wilkie CA (2010) Investigation of the thermal degradation of polyurea: the effect of ammonium polyphosphate and expandable graphite. Polymer 51(11):2277–2285. https://doi.org/10.1016/j.polymer.2010.03.033

    Article  Google Scholar 

  46. Wang JS, Wang DY, Liu Y, Ge XG, Wang YZ (2008) Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin. J Appl Polym Sci 108(4):2644–2653. https://doi.org/10.1002/app.27522

    Article  Google Scholar 

  47. Deodhar S, Shanmuganathan K, Fan Q, Wilkie CA, Costache MC, Dembsey NA et al (2011) Calcium carbonate and ammonium polyphosphate-based flame retardant composition for polypropylene. J Appl Polym Sci 120(3):1866–1873. https://doi.org/10.1002/app.32510

    Article  Google Scholar 

  48. Zhan Y, Wu X, Wang S, Yuan B, Fang Q, Shang S et al (2021) Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid. Polym Degrad Stabil 5:109684. https://doi.org/10.1016/j.polymdegradstab.2021.109684

    Article  Google Scholar 

  49. Radabutra S, Khemthong P, Saengsuwan S, Sangya S (2019) Preparation and characterization of natural rubber bio-based wood adhesive: effect of total solid content, viscosity, and storage time. Polym Bull 77(5):2737–2747. https://doi.org/10.1007/s00289-019-02881-1

    Article  Google Scholar 

  50. Ding R, Su C, Yang Y, Li C, Liu J (2013) Effect of wheat flour on the viscosity of urea-formaldehyde adhesive. Int J Adhes Adhes 41:1–5. https://doi.org/10.1016/j.ijadhadh.2012.08.003

    Article  Google Scholar 

  51. Paz E, Narbón JJ, Abenojar J, Cledera M, Del Real JC (2015) Influence of acrylic adhesive viscosity and surface roughness on the properties of adhesive joint. J Adhes 92(11):877–891. https://doi.org/10.1080/00218464.2015.1051221

    Article  Google Scholar 

  52. Hass P, Müller C, Clauss S, Niemz P (2009) Influence of growth ring angle, adhesive system and viscosity on the shear strength of adhesive bonds. Wood Mater Sci Eng 4(3–4):140–146. https://doi.org/10.1080/17480270903421529

    Article  Google Scholar 

  53. Zhao Y, Li GM, Liu FF, Dai XM, Dong ZX, Qiu XP (2017) Synthesis and properties of novel polyimide fibers containing phosphorus groups in the side chain (DATPPO). Chin J Polym Sci 35(3):372–385. https://doi.org/10.1007/s10118-017-1896-7

    Article  Google Scholar 

  54. Shao X, Du Y, Zheng X, Wang J, Li L (2020) Reduced fire hazards of expandable polystyrene building materials via intumescent flame-retardant coatings. J Mater Sci 55(17):7555–7572. https://doi.org/10.1007/s10853-020-04548-z

    Article  Google Scholar 

  55. Zhan Y, Yuan B, Shang S (2020) Synergistic effect of layered melamine-phytate and intumescent flame retardant on enhancing fire safety of polypropylene. J Therm Anal Calorim 109:1–11. https://doi.org/10.1007/s10973-020-10228-6

    Article  Google Scholar 

  56. An W, Lin J, Sun J, Liew KM (2015) Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim 119(1):229–238. https://doi.org/10.1007/s10973-014-4165-9

    Article  Google Scholar 

  57. Li K, Mousavi M, Hostikka S (2017) Char cracking of medium density fibreboard due to thermal shock effect induced pyrolysis shrinkage. Fire Saf J 91:165–173. https://doi.org/10.1016/j.firesaf.2017.04.027

    Article  Google Scholar 

  58. Tian XA, Rwa B, Zhi WA, Jian WA (2020) Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry. Process Saf Environ Protect 134:121–130. https://doi.org/10.1016/j.psep.2019.11.028

    Article  Google Scholar 

  59. Xu M-J, Wang J, Ding Y-H, Li B (2014) Synergistic effects of aluminum hypophosphite on intumescent flame retardant polypropylene system. Chin J Polym Sci 33(2):318–328. https://doi.org/10.1007/s10118-015-1588-0

    Article  Google Scholar 

  60. Lyu W, Shi Y, Zheng Y, Liu XE (2019) XPS and FTIR studies of fungus-stained Daemonorops margaritae. J For Res 30(02):739–743. https://doi.org/10.1007/s11676-018-0598-5

    Article  Google Scholar 

  61. Khan SM, Gull N, Munawar MA, Islam A, Zia S, Shafiq M et al (2016) 2D carbon fiber reinforced high density polyethylene multi-layered laminated composite panels: structural, mechanical, thermal, and morphological profile. J Mater Sci Technol 32(10):1077–1082. https://doi.org/10.1016/j.jmst.2016.06.011

    Article  Google Scholar 

  62. Li ZM, Zhang G, Li DS, Yang J (2014) Polyamides containing thiadiazole units: synthesis and optical properties. Chin J Polym Sci 32(3):292–304. https://doi.org/10.1007/s10118-014-1407-z

    Article  Google Scholar 

  63. Ying Z, Lin X, Qi Y, Luo J (2008) Preparation and characterization of low-temperature expandable graphite. Mater Res Bull 43(10):2677–2686. https://doi.org/10.1016/j.materresbull.2007.10.027

    Article  Google Scholar 

  64. Al-Hosney HA, Grassian VH (2005) Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study. Phys Chem Chem Phys 7(6):1266–1276. https://doi.org/10.1039/b417872f

    Article  Google Scholar 

  65. **e R, Qu B, Hu K (2001) Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends. Polym Degrad Stabil 72(2):313–321. https://doi.org/10.1016/S0141-3910(01)00026-X

    Article  Google Scholar 

  66. Cui W, Guo F, Chen J (2007) Preparation and properties of flame retardant high impact polystyrene. Fire Saf J 42(3):232–239. https://doi.org/10.1016/j.firesaf.2006.11.002

    Article  Google Scholar 

  67. Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W (2009) Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy 34(10):2117–2123. https://doi.org/10.1016/j.renene.2009.01.017

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51876148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, Y., Zou, Y. et al. Improving the Fire Performance of Structural Insulated Panel Core Materials with Intumescent Flame-Retardant Epoxy Resin Adhesive. Fire Technol 59, 29–51 (2023). https://doi.org/10.1007/s10694-021-01203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-021-01203-0

Keywords

Navigation