Log in

Horizontal Flame Spread Characteristics of Rigid Polyurethane and Molded Polystyrene Foams Under Externally Applied Radiation at Two Different Altitudes

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

To investigate the characteristics of horizontal flame spread over two kinds of typical insulation materials (rigid polyurethane and molded polystyrene foams) under externally applied radiant flux, a series of laboratory-scale experiments are conducted on the Tibetan plateau (at an altitude of 3,658 m) and in the Hefei plain (at an altitude of 30 m) in China for comparisons. The external radiation intensity ranges from 1.0 kW/m2 to 4.5 kW/m2. The temperature distribution in the solid and gaseous phase and the flame spread rate under different external radiations are examined. The different flame spread behaviors of rigid polyurethane and molded polystyrene foams are scrutinized. The rates of flame spread over the two different materials in the plain are larger than those on the plateau at the same external radiant flux. At both altitudes, the flame spread rate increases with the increasing external radiation intensity. And the square root of the reciprocal of flame spread rate v −1/2 f has a negative linear relation with the external radiation intensity, which is consistent with the predictions of prior theory. The calculation of theoretical value of parameter C is 0.039, which is nearly the same as the slope of fitting line. The mechanism of heat transfer during the flame spread process is analyzed in detail, and the simplified expressions of flame spread rate of the two insulation materials under external applied radiation are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Oladipo A., Wichman I., Experimental study of opposed flow flame spread over wood fiber/thermoplastic composite materials, Combustion and Flame 118 (3) (1999) 317–326.

    Article  Google Scholar 

  2. Ohlemiller T., Cleary T., Upward flame spread on composite materials, Fire Safety Journal 32 (2) (1999) 159–172.

    Article  Google Scholar 

  3. Oleszkiewicz I., Fire exposure to exterior walls and flame spread in combustible cladding [J], Fire Technology, 1990, 25(4):357-375.

    Article  Google Scholar 

  4. J Sun, L Hu, Y Zhang (2013) A review on research of fire dynamics in high-rise buildings. Theor Appl Mech Lett 3:042001

    Article  Google Scholar 

  5. Williams FA (1978) Mechanisms of fire spread. Sixteenth International Symposium on Combustion. The Combustion Institute, Pittsburgh, pp 1281–1294.

  6. Fernandez-Pello, A. C., Upward Laminar Flame Spread Under the Influence of Externally Applied Thermal Radiation. Combustion Science and Technology, 1977. 17(3-4): p. 87-98.

    Article  Google Scholar 

  7. Fernandez-Pello, A. C., Downward Flame Spread Under the Influence of Externally Applied Thermal Radiation. Combustion Science and Technology, 1977. 17(1-2): p. 1-9.

    Article  Google Scholar 

  8. Fernandez-Pello A. C., and F. A. Williams, A theory of laminar flame spread over flat surfaces of solid combustibles, Combustion and Flame 28, 251-277 (1977).

    Article  Google Scholar 

  9. Hirano T, Sato K (1975) Effects of radiation and convection on gas velocity and temperature profiles of flames spreading over paper. Symp Int Combust. 15(1): 233–241.

    Article  Google Scholar 

  10. Takashi K (1975) A study of flame spread over a porous material under external radiation fluxes. Symp Int Combust. 15(1): p. 255-265.

    Article  Google Scholar 

  11. Kashiwagi, T. and D. L. Newman, Flame spread over an inclined thin fuel surface. Combustion and Flame, 1976. 26(0): p. 163-177.

    Article  Google Scholar 

  12. Magee, R. S., McAlevy III R. F. (1971) The mechanism of flame spread. Journal of Fire and Flammability 2: 271-297.

    Google Scholar 

  13. Quintiere, J., A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus. Fire and Materials, 1981. 5(2): p. 52-60.

    Article  Google Scholar 

  14. King-Mon Tu, Quintiere J., Wall flame heights with external radiation. Fire Technology. August 1991, Volume 27, Issue 3, pp 195-203.

    Article  Google Scholar 

  15. Brehob, E. G. and A. K. Kulkarni, Experimental measurements of upward flame spread on a vertical wall with external radiation. Fire Safety Journal, 1998. 31(3): p. 181-200.

    Article  Google Scholar 

  16. Delichatsios MM et al. (1994) Effects of external heat flux on upward fire spread: measurements on plywood and numerical predictions. Fire Safety Science, p 12.

  17. Wieser D, Jauch P, Willi U. The Influence of High Altitude on Fire Detector Test Fires [J]. Fire Safety Journal, 1997 (29): 195-204.

    Article  Google Scholar 

  18. Bento D S, Thomson K A, Gulder O L. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures [J]. Combustion and Flame, 2006 (145):765-778.

    Article  Google Scholar 

  19. Flower W, Bowman C. Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres, Twenty-First Symposuim (International on Combustion), Volume 21, Issue 1, 1988, Pages 1115–1124.

    Article  Google Scholar 

  20. Thomson K, Gülder Ö, Weckman E, Fraser R, Small wood G, Snelling D, Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressure up to 4 MPa, Combustion and Flame, 2005;140: 222-32.

    Article  Google Scholar 

  21. J-M Most, P Mandin, J Chen, P Joulain, D Durox, AC Fernande-Pello (1996) Influence of gravity and pressure on pool fire-type diffusion flames. Symposium (International) on Combustion 26(1): 1311–1317

    Article  Google Scholar 

  22. Hirsch D, Hshieh F Y, Beeson H, Pedley M. Carbon dioxide fire suppressant concentration needs for international space station environments [J]. Journal of Fire Sciences, 2002, 20 (5): 391-399.

    Article  Google Scholar 

  23. Nakamura Y, Aoki A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations - for fire safety in space habitats [J]. Advances in Space Research, 2008 (41): 777-782.

    Article  Google Scholar 

  24. Nikitin YV, Komnik YF, Bukhshtab E, Andrievskii V Peculiarities of temperature dependence of thin Bi films resistance. Sov Phys JETR 33: 364–82.

  25. Li Jie, Ji Jie, Zhang Ying, Sun **hua, Characteristics of flame spread over the surface of charring solid combustibles at high altitude [J], Chinese Science Bulletin, 2009, 54(11): 1957-1962.

    Article  Google Scholar 

  26. Huang X (2011) Study on flame spread characteristics of the typical external wall insulation material PS under different environments. University of Science and Technology of China, Hefei.

  27. Ying Zhang, **njie Huang, Qingsong Wang, Jie Ji, **hua Sun, Yi Yin, Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau, Journal of Hazardous Material, 2011,189:34-39.

    Article  Google Scholar 

  28. Zhang Y (2012) Flame spread behavior characteristics over typical charring solid surfaces. University of Science and Technology of China, Hefei.

  29. Quintiere JG (2006) Fundamentals of Fire Phenomena. Wiley, New York.

    Book  Google Scholar 

  30. Saito K, Quintiere JG, Williams FA (1985) Upward turbulent flame spread. In: Proceedings of the First International Symposium on Fire Safety Science, pp 75–86.

  31. Aubel E. V. Concept of a calculation on fluid [J]. Acda. Sci.,1921,173:384-392.

    Google Scholar 

  32. Delichatsios MA (2000) Ignition times for thermally thick and intermediate conditions in flat and cylindrical geometries. Fire Safety Science 6: 233-244.

    Article  Google Scholar 

  33. Delichatsios M, Paroz B, Bhargava A. Flammability properties for charring materials [J]. Fire Safety J 2003; 38:219–28.

    Article  Google Scholar 

  34. Wang Y. et al, Experimental study of the altitude effects on spontaneous ignition characteristics of wood [J], Fuel 89 (2010) 1029–1034.

    Article  Google Scholar 

  35. De Ris JN (1969) Spread of a laminar diffusion flame. Symposium (International) on Combustion 12(1): 241–252.

  36. Bhattacharjee S., West J., Determination of the spread rate in opposed flow flame spread over thick solid fuels in the thermal regime [C], Proc. Combust. Inst. 26 (1996) 1477–1485.

    Article  Google Scholar 

  37. Incropera FP et al (2007) Fundamentals of heat and mass transfer. New York: Wiley.

    Google Scholar 

  38. Gollner M, Huang X, Williams F et al. (2011) An experimental study of flame spread over inclined fuels. In: 10th Symposium on Fire Safety Science, College Park.

Download references

Acknowledgments

This research is supported by National Basic Research Program of China (973 Program, Grant. No. 2012CB719702) and Research Fund for the Doctoral Program of Higher Education (No. 20113402110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **hua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., **ao, H., Yan, W. et al. Horizontal Flame Spread Characteristics of Rigid Polyurethane and Molded Polystyrene Foams Under Externally Applied Radiation at Two Different Altitudes. Fire Technol 51, 1195–1216 (2015). https://doi.org/10.1007/s10694-014-0443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-014-0443-0

Keywords

Navigation