Log in

Evolution of viviparity in cold-climate lizards: testing the maternal manipulation hypothesis

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

We used a cold-climate viviparous lacertid lizard (Eremias prezwalskii) as a model system to test the maternal manipulation hypothesis. Twenty-four gravid females collected from a population in Inner Mongolia (northern China) were maintained in the laboratory for the whole gestation length, with 12 allowed to bask for 14-h daily and the other 12 for 10-h daily. Females selected lower body temperatures but did not thermoregulate more precisely when gravid. The mean gestation length was shorter in females provided with longer basking opportunity. Neonates in the two treatments differed in tail length and the number of ventral scales but not in other examined morphological traits, with offspring born in the 14-h treatment having longer tails but fewer ventral scales. Offspring were sexually dimorphic at birth, with females being smaller in tail length, head length and fore-limb length but having more ventral scales than males of the same size. Offspring born in the 14-h treatment were not only faster runners but also grew faster than did offspring born in the 10-h treatment. Our data validate the main predictions of the maternal manipulation hypothesis that females should shift selected body temperatures during gestation to provide optimal thermal conditions for develo** embryos and that phenotypic traits determined by maternal thermoregulation should enhance offspring fitness. Our study is the first to demonstrate that the maternal manipulation hypothesis applies to cold-climate viviparous reptiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts AC, Perry AM, Lemm JM, Phillips JA (1997) Effects of incubation temperature and water potential on growth and thermoregulatory behavior of hatchling Cuban rock iguanas (Cyclura nubila). Copeia 1997:766–776. doi:10.2307/1447294

    Article  Google Scholar 

  • Andrews RM (2000) Evolution of viviparity in squamate reptiles (Sceloporus spp.): a variant of the cold-climate model. J Zool (Lond) 250:243–253. doi:10.1111/j.1469-7998.2000.tb01075.x

    Article  Google Scholar 

  • Andrews RM, Rose BR (1994) Evolution of viviparity: constraints on egg retention. Physiol Zool 67:1006–1024

    Google Scholar 

  • Bauwens D, Garland T Jr, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49:848–863. doi:10.2307/2410408

    Article  Google Scholar 

  • Beuchat CA (1988) Temperature effects during gestation in a viviparous lizard. J Therm Biol 13:135–142. doi:10.1016/0306-4565(88)90024-1

    Article  Google Scholar 

  • Blackburn DG (1982) Evolutionary origins of viviparity in the Reptilia. I. Sauria. Amphib-reptil 3:185–205. doi:10.1163/156853882X00419

    Article  Google Scholar 

  • Blackburn DG (1985) Evolutionary origins of viviparity in the Reptilia. II. Serpentes, Amphisbaenia, and Ichthyosauria. Amphib-Reptil 5:259–291. doi:10.1163/156853885X00290

    Article  Google Scholar 

  • Blackburn DG (1999) Are viviparity and egg-guarding evolutionarily labile in squamates? Herpetologica 55:556–572

    Google Scholar 

  • Blackburn DG (2000) Reptilian viviparity: past research, future directions, and appropriate models. Comp Biochem Physiol A 127:391–409

    CAS  Google Scholar 

  • Braña F (1993) Shifts in body-temperature and escape behavior of female Podarcis muralis during pregnancy. Oikos 66:216–222. doi:10.2307/3544807

    Article  Google Scholar 

  • Braña F, Ji X (2000) The influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis). J Exp Zool 286:422–433. doi:10.1002/(SICI)1097-010X(20000301)286:4<422::AID-JEZ10>3.0.CO;2-D

    Google Scholar 

  • Brown RP, Griffin S (2005) Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J Therm Biol 30:79–83. doi:10.1016/j.jtherbio.2004.07.005

    Article  Google Scholar 

  • Charland MB (1995) Thermal consequences of reptilian viviparity: thermal regulation in gravid and nongravid snakes (Thamnophis). J Herpetol 29:383–390. doi:10.2307/1564988

    Article  Google Scholar 

  • Charland MB, Gregory PT (1990) The influence of female reproductive status on thermoregulation in a viviparous, Crotalus viridis. Copeia 1990:1089–1098. doi:10.2307/1446493

    Article  Google Scholar 

  • Daut EF, Andrews RM (1993) The effect of pregnancy on the thermoregulatory behavior of the viviparous lizard Calchides ocellatus. J Herpetol 27:6–13. doi:10.2307/1564898

    Article  Google Scholar 

  • Deeming DC, Ferguson MWJ (1991) Physiological effects of temperature on embryonic development in reptiles and birds. In: Deeming DC, Ferguson MWJ (eds) Egg incubation: its effects on embryonic development in reptiles and birds. Cambridge University Press, Cambridge, pp 147–171

    Google Scholar 

  • Du WG, Ji X (2006) Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae). J Exp Zool A 305:47–54. doi:10.1002/jez.a.243

    Article  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York

    Google Scholar 

  • Galán P (1996) Sexual maturity in a population of the lacertid lizard Podarcis bocagei. Herpetol J 6:87–93

    Google Scholar 

  • Goodwin NB, Dulvy NK, Reynolds JD (2002) Life-history correlates of the evolution of live bearing in fishes. Philos Trans R Soc Lond B 357:259–267. doi:10.1098/rstb.2001.0958

    Article  Google Scholar 

  • Hao QL, Liu HX, Ji X (2006) Phenotypic variation in hatchling Mongolian racerunners (Eremias argus) from eggs incubated at constant versus fluctuating temperatures. Acta Zool Sin 52:1049–1057

    Google Scholar 

  • Hodges WL (2004) Evolution of viviparity in horned lizards (Phrynosoma): testing the cold-climate hypothesis. J Evol Biol 17:1230–1237. doi:10.1111/j.1420-9101.2004.00770.x

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Lin LH, Luo LG, Lu HL, Gao JF, Han J (2006) Gestation temperature affects sexual phenotype, morphology, locomotor performance and growth of neonatal brown forest skink, Sphenomorphus indicus. Biol J Linn Soc 88:453–463. doi:10.1111/j.1095-8312.2006.00633.x

    Article  Google Scholar 

  • Ji X, Lin CX, Lin LH, Qiu QB, Du Y (2007) Evolution of viviparity in warm-climate lizards: an experimental test of the maternal manipulation hypothesis. J Evol Biol 20:1037–1045. doi:10.1111/j.1420-9101.2006.01296.x

    Article  PubMed  CAS  Google Scholar 

  • Lin CX, Du Y, Qiu QB, Ji X (2007) Relatively high but narrow incubation temperatures in lizards depositing eggs in warm and thermally stable nests. Acta Zool Sin 53:437–445

    Google Scholar 

  • Lin ZH, Ji X, Luo LG, Ma XM (2005) Incubation temperature affects hatching success, embryonic expenditure of energy and hatchling phenotypes of a prolonged egg-retaining snake, Deinagkistrodon acutus (Viperidae). J Therm Biol 30:289–297. doi:10.1016/j.jtherbio.2005.01.002

    Article  Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574. doi:10.1139/z97-783

    Article  Google Scholar 

  • Mathies T, Andrews RM (1997) Influence of pregnancy on thermal biology of the lizard, Sceloporus jarrovi: why do pregnant females exhibit low body temperatures? Funct Ecol 11:498–507. doi:10.1046/j.1365-2435.1997.00119.x

    Article  Google Scholar 

  • Mell R (1929) Preliminary contributions to an ecology of East Asiatic reptiles, especially snakes. Lingnan Sci J 8:187–197

    Google Scholar 

  • Miles DB, Fitzgerald LA, Snell HL (1995) Morphological correlates of locomotor performance in hatchling Amblyrhynchus cristatus. Oecologia 103:261–264. doi:10.1007/BF00329089

    Article  Google Scholar 

  • Olsson M, Shine R (1997) The limits to reproductive output: offspring size versus number in the sand lizard (Lacerta agilis). Am Nat 149:179–188. doi:10.1086/285985

    Article  Google Scholar 

  • Qualls CP (1997) The effects of reproductive mode and climate on reproductive success in the Australian lizard, Lerista bougainvavillii. J Herpetol 31:60–65. doi:10.2307/1565329

    Article  Google Scholar 

  • Qualls CP, Andrews RM (1999) Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biol J Linn Soc 67:353–376

    Google Scholar 

  • Qualls CP, Shine R (1998) Lerista bougainvavillii: a case study for the evolution of viviparity in reptiles. J Evol Biol 11:63–78. doi:10.1007/s000360050066

    Article  Google Scholar 

  • Peterson CR, Gibson AR, Dorcas ME (1993) Snake thermal ecology: the causes and consequences of body-temperature variation. In: Seigel RA, Collins JT (eds) Snake: ecology and behavior. McGraw-Hill, New York, pp 241–314

    Google Scholar 

  • Reynolds JD, Goodwin NB, Freckleton RP (2002) Evolutionary transitions in parental care and live bearing in vertebrates. Philos Trans R Soc Lond B Biol Sci 357:269–281. doi:10.1098/rstb.2001.0930

    Article  PubMed  Google Scholar 

  • Rhen T, Lang JW (1995) Phenotypic plasticity for growth in the common snap** turtle: effects of incubation temperature, clutch, and their interaction. Am Nat 146:726–747. doi:10.1086/285822

    Article  Google Scholar 

  • Rock J, Andrews RM, Cree A (2000) Effects of reproductive condition, season and site on selected temperatures of a viviparous gecko. Physiol Biochem Zool 73:344–355. doi:10.1086/316741

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf L, Shine R (1991) Thermal biology of reproduction in viviparous skinks, Eulamprus tympanum: why do gravid females bask more? Oecologia 88:562–569

    Google Scholar 

  • Sergeev AM (1940) Researches in the viviparity of reptiles. Moscow Soc Nat JubileeIssue:1–34

  • Shine R (1983) Reptilian viviparity in cold climates: testing the assumptions of an evolutionary hypothesis. Oecologia 57:397–405. doi:10.1007/BF00377186

    Article  Google Scholar 

  • Shine R (1985) The evolution of viviparityin reptiles: an ecological analysis. In: Gans C, Billet F (eds) Biology of Reptilia, vol 15. Wiley, New York, pp 605–695

    Google Scholar 

  • Shine R (1987) The evolution of viviparity: ecological correlates of reproductive mode within a genus of Australian snakes (Pseudechis; Elapidae). Copeia 1987:551–563. doi:10.2307/1445650

    Article  Google Scholar 

  • Shine R (1995) A new hypothesis for the evolution of viviparity in reptiles. Am Nat 145:809–823. doi:10.1086/285769

    Article  Google Scholar 

  • Shine R (2002) An empirical test of the ‘predictability’ hypothesis for the evolution of viviparity in reptiles. J Evol Biol 15:553–560. doi:10.1046/j.1420-9101.2002.00420.x

    Article  Google Scholar 

  • Shine R (2003) Locomotor speeds of gravid lizards: placing ‘costs of reproduction’ within an ecological context. Funct Ecol 17:526–533. doi:10.1046/j.1365-2435.2003.00756.x

    Article  Google Scholar 

  • Shine R (2004) Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures? Evolution 58:1809–1818

    PubMed  Google Scholar 

  • Shine R (2005) Life-history evolution in reptiles. Annu Rev Ecol Evol Syst 36:23–46. doi:10.1146/annurev.ecolsys.36.102003.152631

    Article  Google Scholar 

  • Shine R (2006) Is increased maternal basking an adaptation or a pre-adaptation to viviparity in lizards? J Exp Zool A 305:524–535. doi:10.1002/jez.a.291

    Article  Google Scholar 

  • Shine R, Harlow PS (1993) Maternal manipulation influence offspring viability in a viviparous lizard. Oecologia 96:122–127. doi:10.1007/BF00318039

    Article  Google Scholar 

  • Shine R, Harlow PS (1996) Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77:1808–1817. doi:10.2307/2265785

    Article  Google Scholar 

  • Tinkle DW, Gibbons JW (1977) The distribution and evolution of viviparity in reptiles. Misc Publ Univ Mich Mus Zool 154:1–55

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. J Therm Biol 11:219–222. doi:10.1016/0306-4565(86)90006-9

    Article  Google Scholar 

  • Van Damme R, Bauwens D, Braña F, Verheyen RF (1992) Incubation temperature differentially affects hatching time, egg survival and sprint speed in the lizard Podarcis muralis. Herpetologica 48:220–228

    Google Scholar 

  • Wapstra E (2000) Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Funct Ecol 14:345–352. doi:10.1046/j.1365-2435.2000.00428.x

    Article  Google Scholar 

  • Webb JK, Shine R, Christian KA (2006) The adaptive significance of reptilian viviparity in the tropics: testing the maternal manipulation hypothesis. Evolution 60:115–122

    PubMed  Google Scholar 

  • Weekes HC (1933) On the distribution, habitat and reproductive habits of certain European and Australian snakes and lizards, with particular regard to their adoption of viviparity. Proc Linn Soc NSW 58:270–274

    Google Scholar 

  • Yang J, Sun YY, An H, Ji X (2008) Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B 178:343–349. doi:10.1007/s00360-007-0227-7

    Article  PubMed  Google Scholar 

  • Zhao KT (1999) Lacertidae. In: Zhao EM, Zhao KT, Zhou KY (eds) Fauna Sinica, Reptilia, vol 2. Science Press, Bei**g, pp 219–242

    Google Scholar 

  • Zhao EM, Adler K (1993) Herpetology of China. Published by the Society of the Study of Amphibians and Reptiles, Oxford, OH

    Google Scholar 

Download references

Acknowledgements

The Forestry Bureau of Inner Mongolia Autonomous Region provided a permit for capturing lizards in Wulatehouqi. The experiment complied with the current laws on animal welfare and research in China. We thank Hong An, Guo-Hua Ding, Hong-Liang Lu, Qun-Li Zhang and Wen-Bin Mei for their assistance. Comments by Richard Shine, Daniel Blackburn and one anonymous reviewer substantially improved the earlier version of this paper. This work was supported by grants from National Natural Science Foundation of China (Project No. 30670281), Nan**g Normal University and Hangzhou Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Qu, YF., Hu, RB. et al. Evolution of viviparity in cold-climate lizards: testing the maternal manipulation hypothesis. Evol Ecol 23, 777–790 (2009). https://doi.org/10.1007/s10682-008-9272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9272-2

Keywords

Navigation