Log in

Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Phenotypic data for tree and fruit characteristics was collected over three consecutive years from a germplasm collection of 94 peach and nectarine accessions representing both traditional Spanish as well as foreign cultivars with widespread global plantings. All accessions were grown at the Experimental Station of Aula Dei located in the Ebro Valley (Northern Spain, Zaragoza) under a Mediterranean climate. Tree traits evaluated included bloom and harvest date, vigor, yield, yield efficiency and flower and leaf characteristics. Fruit traits included fresh weight, firmness, soluble solids, titratable acidity, levels of individual soluble sugars (sucrose, glucose, fructose and sorbitol), vitamin C, total phenolics, flavonoids, anthocyanins, relative antioxidant capacity and ripening index. Extensive variability was observed for most qualitative and quantitative traits with significant correlations identified between many traits. While the traditional Spanish accessions demonstrated good adaptability to the northern Spain evaluation site, opportunities for continued improvement in tree and fruit quality traits were demonstrated by an extensive phenotypic variability within the germplasm collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abidi W, Jiménez S, Moreno MA, Gogorcena Y (2011) Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. Int J Mol Sci 12:6919–6935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Carbó J, Arús P (2003) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    PubMed  CAS  Google Scholar 

  • Badenes ML, Werner DJ, Martínez-Calvo J, Lorente M, Llácer G (1998) An overview of the peach industry of Spain. Fruit Var J 52:11–17

    Google Scholar 

  • Baggiolini M (1952) Stades repères du pêcher. Revue Romande d’Agriculture, Viticulture et Arboriculture 4:28–29

    Google Scholar 

  • Bassi D, Selli R (1990) Evaluation of fruit quality in peach and apricot. Adv Hort Sci 4:107–112

    Article  Google Scholar 

  • Besco E, Elena B, Vertuani S, Ziosi P, Brazzo F, Bruni R, Sacchetti G, Manfredini S (2007) The use of photochemiluminescence for the measurement of the integral antioxidant capacity of baobab products. Food Chem 102:1352–1356

    Article  CAS  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra AM, Gillen A, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    Article  PubMed  CAS  Google Scholar 

  • Bowles BL, Juneja VK (1998) Inhibition of foodborne bacterial pathogens by naturally occurring food additives. J Food Safety 18:101–112

    Article  CAS  Google Scholar 

  • Brooks SJ, Moore JN, Murphy JB (1993) Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch]. J Am Soc Hortic Sci 118:97–100

    CAS  Google Scholar 

  • Bureau S, Renard C, Reich M, Ginies C, Audergon JM (2009) Change in anthocyanin concentrations in red apricot fruits during ripening. LWT Food Sci Technol 42:372–377

    Article  CAS  Google Scholar 

  • Byrne DH (2005) Trends in stone fruit cultivar development. Hort Technol 15:494–500

    Google Scholar 

  • Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006

    CAS  Google Scholar 

  • Byrne DH, Raseira MC, Bassi D, Piagnani MC, Gasic K, Reighard GL, Moreno MA, Pérez S (2012) Peach. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer Science + Business Media, LLC 2012, Düsseldorf, pp 505–565

  • CamoASA (2001) The unscrambler 9.6 user manual. CamoASA, Oslo

    Google Scholar 

  • Cantín CM, Gogorcena Y, Moreno MA (2009a) Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric 89:1909–1917

    Article  Google Scholar 

  • Cantín CM, Moreno MA, Gogorcena Y (2009b) Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57:4586–4592

    Article  PubMed  Google Scholar 

  • Cantín CM, Gogorcena Y, Moreno MA (2010) Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica 171:211–226

    Article  Google Scholar 

  • Cevallos-Casals BA, Byrne D, Okie WR, Cisneros-Zevallos L (2006) Selecting new peach and plum genotypes rich in phenolics compounds and enhanced functional properties. Food Chem 96:273–280

    Article  CAS  Google Scholar 

  • Colaric M, Veberic R, Stampar F, Hudina M (2005) Evaluation of peach and nectarine fruit quality and correlations between sensory and chemical attributes. J Sci Food Agric 85:2611–2616

    Article  CAS  Google Scholar 

  • Crisosto CH, Day KR, Crisosto GM, Garner D (2001) Quality attributes of white flesh peaches and nectarines grown under California conditions. J Am Pomol Soc 55:45–51

    Google Scholar 

  • DeJong TM (1999) Developmental and environmental control of dry-matter partitioning in peach. HortScience 34:1037–1040

    Google Scholar 

  • Díaz-Mula HM, Zapata PJ, Guillén F, Castillo S, Martínez-Romero D, Valero D, Serrano M (2008) Changes in physicochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars: a comparative study. J Sci Food Agric 88:2499–2507

    Article  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Map** QTLs controlling fruit quality in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Doty TE (1976) Fructose sweetness: a new dimension. Cereal Foods World 2:62–63

    Google Scholar 

  • FAOSTAT (2012) http://FAOSTAT.fao.org/

  • Font i Forcada C, Gogorcena Y, Moreno MA (2012) Agronomical and fruit quality traits of two peach cultivars on peach-almond hybrid rootstocks growing on Mediterranean conditions. Sci Hortic 140:157–163

    Article  Google Scholar 

  • Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349

    Article  Google Scholar 

  • Forni E, Erba ML, Maestrelli A, Polesello A (1992) Sorbitol and free sugar contents in plums. Food Chem 44:269–275

    Article  CAS  Google Scholar 

  • George AP, Nissen RJ (1992) Effects of water stress, nitrogen and paclobutrazol on flowering, yield and fruit quality of the low-chill peach cultivar Flordaprince. Sci Hortic 49:197–209

    Article  CAS  Google Scholar 

  • Gil MI, Tomás-Barberán FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids and vitamin C contents of nectarine, peach and plum cultivars from California. J Agric Food Chem 50:4976–4982

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF (1999) Strawberries. CABI, Wallingford, p 77

    Google Scholar 

  • Jiménez S, Garín A, Albás ES, Betrán JA, Gogorcena Y, Moreno MA (2004) Effect of several rootstocks on fruit quality of ‘Sunburst’ sweet cherry. Acta Hort 658:353–358

    Google Scholar 

  • Kader AA (1999) Fruit maturity, ripening, and quality relationships. Acta Hort 485:203–208

    Google Scholar 

  • Lester DR, Sherman WB, Atwell BJ (1996) Endopolygalacturonase and the melting flesh (M) locus in peach. J Amer Soc Hort Sci 121:231–235

    CAS  Google Scholar 

  • Milatović D, Nikolić D, Đurović D (2010) Variability, heritability and correlations of some factors affecting productivity in peach. HortScience 37:79–87

    Google Scholar 

  • Moing A, Carbonne F, Rashad MH, Gaudillère JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100:1878–1884

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Monet R, Bassi D (2008) Classical genetics and breeding. In: Layne DR, Bassi D (eds) The peach, botany, production and uses. CAB International, Wallingford, pp 61–84

    Chapter  Google Scholar 

  • Morandi B (2008) Carbohydrate availability affects growth and metabolism in peach fruit. Physiol Plant 133:229–241

    Article  PubMed  CAS  Google Scholar 

  • Moreno MA, Tabuenca MC, Cambra R (1995) Adesoto 101, a plum rootstock for peaches and other stone fruit. HortScience 30:1314–1315

    Google Scholar 

  • Mounzer OH, Conejero W, Nicolás E, Abrisqueta I, García-Orellana YV, Tapia LM, Vera J, Abrisqueta JM, Ruíz-Sánchez MC (2008) Growth pattern and phenological stages of early-maturing peach trees under a Mediterranean climate. HortScience 43:1813–1818

    Google Scholar 

  • Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common australian vegetables and fruits by high-performance liquid chromatography (HPLC). J Agric Food Chem 57(2):554–565

    Article  PubMed  CAS  Google Scholar 

  • Orazem P, Stampar F, Hudina M (2011) Fruit quality of Redhaven and Royal Glory peach cultivars on seven different rootstocks. J Agric Food Chem 59:9394–9401

    Article  PubMed  CAS  Google Scholar 

  • Pirie A, Mullins MG (1977) Interrelationships of sugars, anthocyanins, total phenols and dry weight in the skin of grape berries during ripening. Am J Enol Vitic 28:204–209

    CAS  Google Scholar 

  • Prior RL, Cao GH (2000) Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35:588–592

    CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  PubMed  CAS  Google Scholar 

  • Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agric Food Chem 61:6344–6357

    Article  PubMed  CAS  Google Scholar 

  • Robertson JA, Meredith Scorza R (1988) Characteristics of fruit from high- and low-quality peach cultivars. HortScience 23:1032–1034

    Google Scholar 

  • Serrano M, Guillén F, Martínez-Romero D, Castillo S, Valero D (2005) Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J Agric Food Chem 53:2741–2745

    Article  PubMed  CAS  Google Scholar 

  • Souza VAB, Byrne DH, Taylor JF (1998) Heritability, genetic and phenotypic correlations, and predicted selection response quantitative traits in peach. II. An analysis of several fruit traits. J Amer Soc Hort Sci 123:604–611

    Google Scholar 

  • Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L (2008) Preliminary characterisation of peach cultivars for their antioxidant capacity. J Food Sci Technol 43:810–815

    Article  CAS  Google Scholar 

  • Tomás-Barberán FA, Robins RJ (1997) Phytochemistry of fruit and vegetables. Oxford University Press, New York, p 398

    Google Scholar 

  • Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  PubMed  Google Scholar 

  • Vauzour D, Vafeiadou K, Rodríguez-Mateos A, Rendeiro C, Spencer J (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3(3–4):115–126

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  • Yamaguchi S, Yoshikawa T, Ikeda S, Ninomiya T (1970) Studies on the taste of some sweet substances. Part I. Measurement of the relative sweetness. Agr Biol Chem 34:181–186

    Article  Google Scholar 

  • Yoshida M (1970) Genetical studies on the fruit quality of peach varieties. Bull Hort Res Sta Jpn 9:1–15

    Google Scholar 

Download references

Acknowledgments

We thank R. Giménez, E. Sierra, S. Segura and N. Miguel for technical assistance and plant management in the field. We gratefully acknowledge S. Jiménez and G. Reig for statistical analysis. This study was funded by the Spanish Ministry of Science and Innovation (MICINN) grants AGL2005-05533, AGL2008-00283 and AGL2011-24576, and RFP 2009-00016 cofunded by FEDER and the Regional Government of Aragon (A44). C. Font was supported by a JAE fellowship from Consejo Superior de Investigaciones Científicas (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ángeles Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Font i Forcada, C., Gradziel, T.M., Gogorcena, Y. et al. Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica 197, 261–277 (2014). https://doi.org/10.1007/s10681-014-1065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1065-9

Keywords

Navigation