Log in

Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The hydrologic cycle’s fundamental component, evapotranspiration, is a crucial parameter for research on climate, hydrology, and water use in agriculture. Efficient water management in agriculture requires an accurate assessment of reference evapotranspiration (ETo). The Food and Agriculture Organization recommended Penman–Monteith (PM) approach is among the most precise models for computing ETo. Nevertheless, this technique requires a comprehensive climate dataset, typically only accessible at a few meteorological observatories. As a result, estimating ETo using a small climatic dataset may be an alternative for water management aspects. Thus, in the current study, 12 temperature, ten radiation, and seven mass transfer-based models were assessed using 31 years of meteorological data (1990–2020) and compared with the traditional PM approach in the semiarid environment of Central Delhi, India. Moreover, ranking different models in data-limited situations was attempted using multi-criteria decision-making (MCDM) techniques viz.,TOPSIS (technique for order performance by similarity to ideal solution) and entropy. Results showed that the Priestley–Taylor (PRTY) and Blaney–Criddle (BLCD) models were found to be the most appropriate alternatives to the PM model, with Pearson’s coefficient of correlation (r) values of 0.93 and 0.96, respectively, and mean absolute percentage error (MAPE) values of 13.30 and 21.11%. According to the performance evaluation indices, the performance of the radiation-based models was superior to that of the temperature and mass transfer models. Nevertheless, this ranking would aid in precisely estimating ETo with minimal data, resulting in efficient irrigation scheduling and water resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

All pertinent information is presented in the article.

Abbreviations

FAO:

Food and Agriculture Organization

PM:

Penman–Monteith model

ETo:

Reference evapotranspiration

MCDM:

Multi-criteria decision-making

PRTY:

Priestley–Taylor

BLCD:

Blaney–Criddle

r :

Pearson’s correlation coefficient

MAPE:

Mean absolute percentage error

TOPSIS:

Technique for order performance by similarity to ideal solution

ET:

Evapotranspiration

RBF:

Radial basis function

HASA:

Hargreaves and Samani

ICAR:

Indian Council of Agricultural Research

ACR-IV:

Agro-Climatic-region-IV

IARI:

Indian Agricultural Research institute

R2:

Coefficient of determination

d :

Index of agreement

MSE:

Mean squared error

RMSE:

Root-mean-squared error

SD:

Standard deviation

SWAT:

Soil and Water Assessment Tool

NRMSE:

Normalized root-mean-squared error

BLCD:

Blaney and Criddle (1950)

HASA:

Hargreaves and Samani (1985)

TRAJ:

Trajkovic (2007)

TBTL1:

Tabari and Talaee (2011)

TBTL2:

Tabari and Talaee (2011)

DRAL1:

Droogers and Allen (2002)

DRAL2:

Droogers and Allen (2002)

BERT:

Berti et al. (2014)

DORJ:

Dorji et al. (2016)

BARO:

Baier and Robertson (1965)

AHGH1:

Ahooghalandari (2016)

AHGH2:

Ahooghalandari (2016)

MAKK:

Makkink (1957)

TURC:

Turc (1961)

HRGV:

Hargreaves (1994)

ABTW1:

Abtew (1996)

ABTW2:

Abtew (1996)

IRMK:

Irmak et al. (2003)

TBTLr1:

Tabari and Talaee (2011)

TBTLr2:

Tabari and Talaee (2011)

OUDN:

Oudin (2004)

DLTN:

Dalton (1802)

MEYR:

Meyer (1926)

ROHW:

Rohwer (1931)

WMO:

WMO (1966)

BRWE:

Brockamp and Wenner

PENM:

Penman (1948)

ROMA:

Romanenko (1961)

SVR:

Support vector regression

MA:

Moving average

PSO:

Particle swarm optimization

GWO:

Grey Wolf optimization

GSA:

Gravitational search algorithm

References

  • Abtew, W. (1996). Evapotranspiration measurements and modeling for three wetland systems in South Florida1. JAWRA Journal of the American Water Resources Association, 32, 465–473. https://doi.org/10.1111/j.1752-1688.1996.tb04044.x

    Article  Google Scholar 

  • Adnan, R., Mostafa, R., Chen, Z., et al. (2022). Advanced hybrid metaheuristic machine learning models application for reference crop evapotranspiration prediction. Agronomy, 13, 98. https://doi.org/10.3390/agronomy13010098

    Article  Google Scholar 

  • Adnan, R. M., Mostafa, R. R., Islam, A. R., et al. (2021). Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Computer Electron Agriculture. https://doi.org/10.1016/j.compag.2021.106541

    Article  Google Scholar 

  • Afshar, A., Mariño, M. A., Saadatpour, M., & Afshar, A. (2011). Fuzzy topsis multi-criteria decision analysis applied to Karun reservoirs system. Water Resources Management, 25, 545–563. https://doi.org/10.1007/s11269-010-9713-x

    Article  Google Scholar 

  • Aghajani, M., Mostafazadeh-Fard, B., & Navabian, M. (2017). Assessing criteria affecting performance of the sefidroud irrigation and drainage network using topsis–entropy theory. Irrigation and Drainage, 66, 626–635. https://doi.org/10.1002/ird.2145

    Article  Google Scholar 

  • Ahooghalandari, M., Khiadani, M., & Jahromi, M. E. (2016). Develo** equations for estimating reference evapotranspiration in Australia. Water Resources Management, 30, 3815–3828. https://doi.org/10.1007/s11269-016-1386-7

    Article  Google Scholar 

  • Ajjur, S. B., & Al-Ghamdi, S. G. (2021). Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Climatic Change, 166, 28. https://doi.org/10.1007/s10584-021-03122-z

    Article  Google Scholar 

  • Alamanos, A., Mylopoulos, N., Loukas, A., & Gaitanaros, D. (2018). An integrated multicriteria analysis tool for evaluating water resource management strategies. Water, 10, 1795. https://doi.org/10.3390/w10121795

    Article  Google Scholar 

  • Allen, R. G. (1996). Assessing integrity of weather data for reference evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 122, 97–106. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:2(97)

    Article  Google Scholar 

  • Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No.56, (Vol. 56, pp. 26–40). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Allen, R. G., Pruitt, W. O., Wright, J. L., et al. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81, 1–22. https://doi.org/10.1016/j.agwat.2005.03.007

    Article  Google Scholar 

  • Amini, A., Karami, F., Sedri, M. H., & Khaledi, V. (2022). Determination of water requirement and crop coefficient for strawberry using lysimeter experiment in a semi-arid climate. H2 Open Journal, 5, 642–655. https://doi.org/10.2166/h2oj.2022.030

    Article  Google Scholar 

  • Antonopoulos, V. Z. (2018). Evaluation of different methods to estimate monthly reference evapotranspiration in a Mediterranean area. Water Utility Journal, 18, 61–77.

    Google Scholar 

  • Aydin, Y. (2019). Comparison of different determining methods of reference eto based on limited weather conditions in gap region. Applied Ecology Environment Research. https://doi.org/10.15666/aeer/1704_1023910251

    Article  Google Scholar 

  • Aydın, Y. (2021). Assessing of evapotranspiration models using limited climatic data in Southeast anatolian project region of Turkey. PeerJ, 9, 11571. https://doi.org/10.7717/peerj.11571

    Article  Google Scholar 

  • Azhar, A. H., & Perera, B. J. C. (2011). Evaluation of reference evapotranspiration estimation methods under Southeast Australian conditions. Journal of Irrigation and Drainage Engineering, 137, 268–279. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000297

    Article  Google Scholar 

  • Azua-Barron, M., Arteaga-Ramirez, R., Vázquez-Peña, M. A., et al. (2020). Calibration and evaluation of mathematical models to calculate reference evapotranspiration in greenhouses. Revista Mexicana de Ciencias Agrícolas, 11, 125–137. https://doi.org/10.29312/remexca.v11i1.1906

    Article  Google Scholar 

  • Babamiri, O., & Dinpazhoh, Y. (2016). Comparison and evaluation of twenty methods for estimating reference evapotranspiration based on three general categories: air temperature, solar radiation and mass transfer in the basin of lake Urmia. JWSS-Isfahan University of Technology, 20, 145–161. https://doi.org/10.18869/acadpub.jstnar.20.77.145

    Article  Google Scholar 

  • Baier, W., & GeoW, R. (1965). Estimation of latent evaporation from simple weather observations. Canadian Journal of Plant Science, 45, 276–284. https://doi.org/10.4141/cjps65-051

    Article  Google Scholar 

  • Berti, A., Tardivo, G., Chiaudani, A., et al. (2014). Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, 20–25.

    Article  Google Scholar 

  • Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data. Washington, D.C.: U.S. Soil Conservation Service.

    Google Scholar 

  • Bourletsikas, A., Argyrokastritis, I., & Proutsos, N. (2017). Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest. Hydrology Research, 49, 1028–1041. https://doi.org/10.2166/nh.2017.232

    Article  Google Scholar 

  • Brockamp, B., & Wenner, H. (1963). Verdunstungsmessungen auf den Steiner see bei münster. Dt Gewässerkundl Mitt, 7, 149-154.

  • Čadro, S., Uzunović, M., Žurovec, J., & Žurovec, O. (2017). Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research, 5, 309–324. https://doi.org/10.1016/j.iswcr.2017.07.002

    Article  Google Scholar 

  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chen, Z., Yang, X., & Zhu, Y. (2015). Approach to multiple attribute decision making with interval-valued intuitionistic fuzzy information and its application. Journal of Intelligent & Fuzzy System, 29, 489–497. https://doi.org/10.3233/IFS-141201

    Article  Google Scholar 

  • Dai, L., Fu, R., Zhao, Z., et al. (2022). Comparison of fourteen reference evapotranspiration models with lysimeter measurements at a site in the humid alpine meadow, Northeastern Qinghai-Tibetan plateau. Frontiers in Plant Science, 13, 854196.

    Article  Google Scholar 

  • Dalton, J. (1802) Experimental essays on the constitution of mixed gases: on the force of steam or vapour from water or other liquids in different temperatures, both in a torricelli vacuum and in Air; on evaporation; and on expansion of gases by heat. Memoirs of the Literary and Philosophical Society of Manchester, 5, 536–602

  • Dar, E., Yousuf, A., & Brar, A. (2017). Comparison and evaluation of selected evapotranspiration models for Ludhiana district of Punjab. Journal of Agrometeorology, 19, 274–276. https://doi.org/10.54386/jam.v19i3.671

    Article  Google Scholar 

  • Deshmukh DSP farming system and sustainable agriculture (1+0). 66 (2021)

  • Diouf, O. C., Weihermüller, L., Ba, K., Faye, S. C., Faye, S., & Vereecken, H. (2016). Estimation of Turc reference evapotranspiration with limited data against the Penman-Monteith Formula in Senegal. Journal of Agriculture and Environment for International Development, 110, 117–137.

    Google Scholar 

  • Djaman, K., Koudahe, K., Akinbile, C. O., & Irmak, S. (2017). Evaluation of eleven reference evapotranspiration models in semiarid conditions. Journal of Water Resource and Protection, 9, 1469–1490. https://doi.org/10.4236/jwarp.2017.912094

    Article  Google Scholar 

  • Djaman, K., Tabari, H., Balde, A. B., et al. (2016). Analyses, calibration and validation of evapotranspiration models to predict grass-reference evapotranspiration in the Senegal river delta. Journal of Hydrology: Regional Studies, 8, 82–94.

    Google Scholar 

  • Dorji, U., Olesen, J. E., & Seidenkrantz, M. S. (2016). Water balance in the complex mountainous terrain of Bhutan and linkages to land use. Journal of Hydrology Regional Studies, 7, 55–68. https://doi.org/10.1016/j.ejrh.2016.05.001

    Article  Google Scholar 

  • Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16, 33–45. https://doi.org/10.1023/A:1015508322413

    Article  Google Scholar 

  • El-kenawy, E.-S.M., Zerouali, B., Bailek, N., et al. (2022). Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions. Environmental Science and Pollution Research, 29, 81279–81299. https://doi.org/10.1007/s11356-022-21410-8

    Article  Google Scholar 

  • Er-Raki, S., Chehbouni, A., Khabba, S., et al. (2010). Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? Journal of Arid Environments, 74, 1587–1596. https://doi.org/10.1016/j.jaridenv.2010.07.002

    Article  Google Scholar 

  • Fisher, D. K., & Pringle, H. C., III. (2013). Evaluation of alternative methods for estimating reference evapotranspiration. Agricultural Sciences, 4, 51–60. https://doi.org/10.4236/as.2013.48A008

    Article  Google Scholar 

  • Gao, F., Feng, G., Ouyang, Y., et al. (2017). Evaluation of reference evapotranspiration methods in arid, semiarid, and humid regions. Journal of the American Water Resources Association, 53, 791–808. https://doi.org/10.1111/1752-1688.12530

    Article  Google Scholar 

  • Gocic, M., & Trajkovic, S. (2014). Analysis of trends in reference evapotranspiration data in a humid climate. Hydrological Sciences Journal, 59, 165–180. https://doi.org/10.1080/02626667.2013.798659

    Article  Google Scholar 

  • Gul, S., Ren, J., **ong, N., & Khan, M. (2021). Design and analysis of statistical probability distribution and non-parametric trend analysis for reference evapotranspiration. PeerJ, 9, e11597. https://doi.org/10.7717/peerj.11597

    Article  Google Scholar 

  • Hafeez, M., Chatha, Z. A., Bakhsh, A., et al. (2020). Reference Evapotranspiration by Hargreaves and Modified Hargreaves Equations under Semi-Arid Environment. Current Research in Agricultural Sciences, 7, 58–63. https://doi.org/10.18488/journal.68.2020.72.58.63

    Article  Google Scholar 

  • Hamed, M.M, Khan, N., Shahid, S., Muhammad, M.K.I. (2022). Ranking of empirical evapotranspiration models in different climate Zones of Pakistan. Review.

  • Hargreaves, H. G. (1994). Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering, 120, 1132–1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1, 96–99.

    Article  Google Scholar 

  • Hosseinzadehtalaei, P. (2014). Performance evaluation of modified versions of Hargreaves equation across a wide range of Iranian climates. Meteorology and Atmospheric Physics, 126, 65–70. https://doi.org/10.1007/s00703-014-0333-5

    Article  Google Scholar 

  • Irmak, S., Irmak, A., Allen, R., & Jones, J. (2003). Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal of Irrigation and Drainage Engineering-ASCE, 129, 336–347. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)

    Article  Google Scholar 

  • Jensen, H. E., Svendsen, H., Jensen, S. E., & Mogensen, V. O. (1990). Canopy-air temperature of crops grown under different irrigation regimes in a temperate humid climate. Irrigation Science, 11, 181–188. https://doi.org/10.1007/BF00189456

    Article  Google Scholar 

  • Jensen, M. E. (1968). Water consumption by agricultural plants (Chapter 1) (pp. 1–22). Academic Press.

    Google Scholar 

  • Jhajharia, D., Berma, S. D., & Agrawal, G. (2004). Comparison of simpler radiation-based ET models with penman monteith model for humid region. Journal of Agricultural Engineering, 41, 32–36.

    Google Scholar 

  • Kiafar, H., Babazadeh, H., Marti, P., et al. (2017). Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations. Theoretical and Applied Climatology, 130, 377–389. https://doi.org/10.1007/s00704-016-1888-5

    Article  Google Scholar 

  • Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32, 669–679. https://doi.org/10.1016/j.ijforecast.2015.12.003

    Article  Google Scholar 

  • Kirch, W. (ed) (2008). Pearson’s correlation coefficient. In: Encyclopedia of public health. Springer Netherlands, Dordrecht, pp. 1090–1091.

  • Kushwaha, N. L., Rajput, J., Sena, D., et al. (2022a). Evaluation of data-driven hybrid machine learning algorithms for modelling daily reference evapotranspiration. Atmosphere-Ocean, 60, 1–22. https://doi.org/10.1080/07055900.2022.2087589

    Article  Google Scholar 

  • Kushwaha, N. L., Rajput, J., Sena, D. R., et al. (2022b). Evaluation of data-driven hybrid machine learning algorithms for modelling daily reference evapotranspiration. Atmosphere-Ocean, 60, 519–540. https://doi.org/10.1080/07055900.2022.2087589

    Article  Google Scholar 

  • Lang, D., Zheng, J., Shi, J., et al. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in Southwestern China. Water, 9, 734. https://doi.org/10.3390/w9100734

    Article  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2012). Groundwater quality assessment based on rough sets attribute reduction and topsis method in a semi-arid area, China. Environmental Monitoring and Assessment, 184, 4841–4854. https://doi.org/10.1007/s10661-011-2306-1

    Article  CAS  Google Scholar 

  • Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Information Sciences, 330, 1–18. https://doi.org/10.1016/j.ins.2015.10.005

    Article  Google Scholar 

  • Makkink, G.F., (1957). Testing the Penman Formula by Means of Lysimeters. Journal of the Institution of Water Engineers and Scientists, 11, 277–288.

  • Makropoulos, C., Natsis, K., Liu, S., et al. (2008). Decision support for sustainable option selection in integrated urban water management. Environmental Modelling & Software, 23, 1448–1460. https://doi.org/10.1016/j.envsoft.2008.04.010

    Article  Google Scholar 

  • Malik, A., Jamei, M., Ali, M., et al. (2022). Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection. Agricultural Water Management, 272, 107812. https://doi.org/10.1016/j.agwat.2022.107812

    Article  Google Scholar 

  • Martínez-Cob, A., & Tejero-Juste, M. (2004). A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agricultural Water Management, 64, 251–264. https://doi.org/10.1016/S0378-3774(03)00199-9

    Article  Google Scholar 

  • Martins, D. S., Paredes, P., Raziei, T., et al. (2017). Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. International Journal of Climatology, 37, 2378–2397. https://doi.org/10.1002/joc.4852

    Article  Google Scholar 

  • Meyer, A. (1926). Über einige zusammenhänge zwischen klima und boden in Europa. ETH Zurich.

    Google Scholar 

  • Muhammad Adnan, R., Chen, Z., Yuan, X., et al. (2020). Reference evapotranspiration modeling using new heuristic methods. Entropy (basel), 22, 547. https://doi.org/10.3390/e22050547

    Article  Google Scholar 

  • Muhammad, M. K. I., Nashwan, M. S., Shahid, S., et al. (2019). Evaluation of empirical reference evapotranspiration models using compromise programming: A case study of Peninsular Malaysia. Sustainability, 11, 4267. https://doi.org/10.3390/su11164267

    Article  Google Scholar 

  • Nandagiri, L., & Kovoor, G. M. (2006). Performance evaluation of reference evapotranspiration equations across a range of Indian climates. Journal of Irrigation and Drainage Engineering, 132, 238–249. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:3(238)

    Article  Google Scholar 

  • Ndulue, E., Onyekwelu, I., Ogbu, K., & Ogwo, V. (2019). Performance evaluation of solar radiation equations for estimating reference evapotranspiration (ETo) in a humid tropical environment. Journal of Water and Land Development, 42, 124–135. https://doi.org/10.2478/jwld-2019-0053

    Article  Google Scholar 

  • Oba, S., Sato, M., Takemasa, I., et al. (2003). A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 19, 2088–2096. https://doi.org/10.1093/bioinformatics/btg287

    Article  CAS  Google Scholar 

  • Odhiambo, L., Wright, W., Yoder, R., & Biological,. (2005). Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid southeast United States. Applied Engineering in Agriculture, 21, 197–202. https://doi.org/10.13031/2013.18153

    Article  Google Scholar 

  • WMO, W.M., Harbeck, G.E., Nordenson, T.J., et al. (1966). Commission for instruments and methods of observation (CIMO). Measurement and estimation of evaporation and evapotranspiration : report of a working group on evaporation measurement of the Commission for Instruments and methods of observation. WMO.

  • Oudin, L., Hervieu, F., Michel, C., et al. (2005). Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology, 303, 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

    Article  Google Scholar 

  • Pandey, P. K., Dabral, P. P., & Pandey, V. (2016). Evaluation of reference evapotranspiration methods for the northeastern region of India. International Soil and Water Conservation Research, 4, 52–63. https://doi.org/10.1016/j.iswcr.2016.02.003

    Article  Google Scholar 

  • Pandey, P. K., & Pandey, V. (2016). Evaluation of temperature-based Penman-Monteith (TPM) model under the humid environment. Model Earth System and Environment, 2, 152. https://doi.org/10.1007/s40808-016-0204-9

    Article  Google Scholar 

  • Penman, H. L. (1948). Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 193, 120–145. https://doi.org/10.1098/rspa.1948.0037

    Article  CAS  Google Scholar 

  • Pietersen, K. (2006). Multiple criteria decision analysis (MCDA): A tool to support sustainable management of groundwater resources in South Africa. Water SA, 32, 119–128. https://doi.org/10.4314/wsa.v32i2.5242

    Article  Google Scholar 

  • Pinos, J. (2022). Estimation methods to define reference evapotranspiration: A comparative perspective. Water Practice and Technology, 17, 940–948. https://doi.org/10.2166/wpt.2022.028

    Article  Google Scholar 

  • Poyen, E. F. B., Ghosh, A. K., & PalashKundu, P. (2016). Review on different evapotranspiration empirical equations. International Journal of Advanced Engineering, Management and Science, 2(3), 17–24.

    Google Scholar 

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81–92. https://doi.org/10.1175/1520-0493(1972)100%3c0081:OTAOSH%3e2.3.CO;2

    Article  Google Scholar 

  • Qin, X. S., Huang, G. H., Chakma, A., et al. (2008). A MCDM-based expert system for climate-change impact assessment and adaptation planning—A case study for the Georgia Basin, Canada. Expert Systems with Applications, 34, 2164.

    Article  Google Scholar 

  • Quej Chi, V., Almorox, J., Moratiel, R., & Arnaldo, J. (2018). Evaluation of temperature-based methods for the estimation of reference evapotranspiration in the Yucatán Peninsula, Mexico. Journal of Hydrologic Engineering, 24, 10. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001747

    Article  Google Scholar 

  • Rajput, J., Kushwaha, N. L., Sikka, A., et al. (2022a). Water accounting of Kurukshetra district and assessing effects of sustainable interventions on water saving. Journal of the Indian Society of Soil Science, 50, 91–100.

    Google Scholar 

  • Rajput, J., Singh, M., Lal, K., et al. (2022). Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration. Journal of Water and Climate Change, 14, jwc2022385. https://doi.org/10.2166/wcc.2022.385

    Article  Google Scholar 

  • Ramírez, V. H., Mejía, A., Marín, E. V., & Arango, R. (2011). Evaluation of models for estimating the reference evapotranspiration in Colombian coffee zone. Agronomía Colombiana, 29, 107–114.

    Google Scholar 

  • Ravazzani, G., Corbari, C., Morella, S., et al. (2012). Modified hargreaves-samani equation for the assessment of reference evapotranspiration in Alpine River Basins. Journal of Irrigation and Drainage Engineering, 138, 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453

    Article  Google Scholar 

  • Rodrigues, G. C., & Braga, R. P. (2021). Estimation of reference evapotranspiration during the irrigation season using nine temperature-based methods in a hot-summer mediterranean climate. Agriculture, 11, 124. https://doi.org/10.3390/agriculture11020124

    Article  Google Scholar 

  • Rohwer, C. (1931). Evaporation from free water surfaces. Technical Bulletins.

    Google Scholar 

  • Romanenko, V. A. (1961). Computation of the Autumn Soil Moisture Using a Universal Relationship for a Large Area. Proc. of Ukrainian Hydrometeorological Research Institute, 3, 12–25.

  • Rv, A. (1961). Computation of the autumn soil moisture using a universal relationship for a large area. Proc of Ukrainian Hydrometeorological Research Institute, 3, 12–25.

    Google Scholar 

  • Salam, R., Islam, A. R. M. T., Pham, Q. B., et al. (2020). The optimal alternative for quantifying reference evapotranspiration in climatic sub-regions of Bangladesh. Science and Reports, 10, 20171. https://doi.org/10.1038/s41598-020-77183-y

    Article  CAS  Google Scholar 

  • Sammis, T. W., Wang, J., & Miller, D. R. (2011). The transition of the Blaney-Criddle formula to the Penman-Monteith equation in the western United States. Journal of Service Climatology, 5(1), 1–1. https://doi.org/10.46275/JoASC.2011.02.001

    Article  Google Scholar 

  • Senent-Aparicio, J., Pérez-Sánchez, J., Carrillo-García, J., & Soto, J. (2017). Using SWAT and fuzzy TOPSIS to assess the impact of climate change in the headwaters of the Segura River Basin (SE Spain). Water, 9, 149. https://doi.org/10.3390/w9020149

    Article  Google Scholar 

  • Sharifi, A., & Dinpashoh, Y. (2014). Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran. Water Resources Management: An international Journal Published for the European Water Resources Association (EWRA), 28, 5465–5476.

    Article  Google Scholar 

  • Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737–750.

    Article  Google Scholar 

  • Shiri, J. (2019). Modeling reference evapotranspiration in island environments: Assessing the practical implications. Journal of Hydrology, 570, 265–280. https://doi.org/10.1016/j.jhydrol.2018.12.068

    Article  Google Scholar 

  • Singh, V. P., & Xu, C. -Y. (1997). Evaluation and generalization of 13 equations for determining free water evaporation. Hydrological Processes, 11, 311–323.

  • Song, X., Zhu, K., Lu, F., & **ao, W. (2017). Spatial and temporal variation of reference evapotranspiration under climate change: A case study in the Sanjiang Plain, Northeast China. Hydrology Research, 49, 251–265. https://doi.org/10.2166/nh.2017.039

    Article  Google Scholar 

  • Srdjevic, B., Medeiros, Y. D. P., & Faria, A. S. (2004). An objective multi-criteria evaluation of water management scenarios. Water Resources Management, 18, 35–54. https://doi.org/10.1023/B:WARM.0000015348.88832.52

    Article  Google Scholar 

  • Sun, L., & Song, C. (2008). Evapotranspiration from a freshwater marsh in the Sanjiang Plain, Northeast China. Journal of Hydrology, 352, 202–210. https://doi.org/10.1016/j.jhydrol.2008.01.010

    Article  Google Scholar 

  • Tabari, H., Grismer, M. E., & Trajkovic, S. (2011). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31, 107.

    Article  Google Scholar 

  • Tabari, H., Grismer, M. E., & Trajkovic, S. (2013). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31, 107–117. https://doi.org/10.1007/s00271-011-0295-z

    Article  Google Scholar 

  • Tabari, H., & Talaee, P. H. (2011). Local calibration of the hargreaves and priestley-taylor equations for estimating reference evapotranspiration in arid and cold climates of iran based on the Penman-Monteith model. Journal of Hydrologic Engineering, 16, 837–845. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000366

    Article  Google Scholar 

  • Tao, H., Diop, L., Bodian, A., et al. (2018). Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agricultural Water Management, 208, 140–151. https://doi.org/10.1016/j.agwat.2018.06.018

    Article  Google Scholar 

  • Todorovic, M., Karic, B., & Pereira, L. S. (2013). Reference evapotranspiration estimate with limited weather data across a range of mediterranean climates. Journal of Hydrology, 481, 166–176. https://doi.org/10.1016/j.jhydrol.2012.12.034

    Article  Google Scholar 

  • Tomar, A. S. (2015). Comparative performance of reference evapotranspiration equations at sub-humid Tarai Region of Uttarakhand, India. International Journal of Agricultural Research, 10, 65–73. https://doi.org/10.3923/ijar.2015.65.73

    Article  Google Scholar 

  • Tomar, A. (2022). Performance evaluation of calibrated radiation-based ET0 equations against standard FAO56-PM model in humid climatic condition. MAUSAM, 73, 929–940. https://doi.org/10.54302/mausam.v73i4.588

    Article  Google Scholar 

  • Trajkovic, S. (2005). Temperature-based approaches for estimating reference evapotranspiration. Journal of Irrigation and Drainage Engineering-ASCE. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316)

    Article  Google Scholar 

  • Trajkovic, S. (2007). Hargreaves versus Penman-Monteith under humid conditions. Journal of Irrigation and Drainage Engineering, 133, 38–42. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:1(38)

    Article  Google Scholar 

  • Trajkovic, S., & Kolakovic, S. (2009). Estimating reference evapotranspiration using limited weather data. Journal of Irrigation and Drainage Engineering, 135, 443–449. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000094

    Article  Google Scholar 

  • Turc, L. (1961). Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy, 12, 13–49.

  • Valipour, M. (2017). Calibration of mass transfer-based models to predict reference crop evapotranspiration. Applied Water Science, 7, 625–635. https://doi.org/10.1007/s13201-015-0274-2

    Article  CAS  Google Scholar 

  • Valle Júnior, L. C. G., Ventura, T. M., Gomes, R. S. R., et al. (2020). Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna. Agricultural Water Management, 232, 106040.

    Article  Google Scholar 

  • Vaz, P. J., Schütz, G., Guerrero, C., & Cardoso, P. J. S., et al. (2022). A study on the prediction of evapotranspiration using freely available meteorological data. In D. Groen, C. de Mulatier, & M. Paszynski (Eds.), Computational Science—ICCS 2022 (pp. 436–450). Springer International Publishing.

    Chapter  Google Scholar 

  • Vishwakarma, D. K., Pandey, K., Kaur, A., et al. (2022). Methods to estimate evapotranspiration in humid and subtropical climate conditions. Agricultural Water Management, 261, 107378. https://doi.org/10.1016/j.agwat.2021.107378

    Article  Google Scholar 

  • Wable, P., Jha, M., & Gorantiwar, S. (2019). Assessing suitability of temperature-based reference evapotranspiration methods for semi-arid basin of Maharashtra. Journal of Agrometeorology, 21, 351–356. https://doi.org/10.54386/jam.v21i3.259

    Article  Google Scholar 

  • Wang, S., Lian, J., Peng, Y., et al. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220–230. https://doi.org/10.1016/j.agwat.2019.03.027

    Article  Google Scholar 

  • Wang, Y. -M., Namaona, W., Traore, S., & Zhang, Z. -C. (2016). Seasonal temperature-based models for reference evapotranspiration estimation under semi-arid condition of Malawi. African Journal of Tropical Agriculture, 4(11), 001–009.

  • Wang, Y. M., Namaona, W., Traore, S., & Zhang, Z. C. (2009). Seasonal temperature-based models for reference evapotranspiration estimation under semi-arid condition of Malawi. African Journal Agricultural Research, 4(9), 878–886.

    Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309–1313.

    Article  Google Scholar 

  • Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  • Xu, J., Peng, S., Ding, J., et al. (2013). Evaluation and calibration of simple methods for daily reference evapotranspiration estimation in humid East China. Archives of Agronomy and Soil Science, 59, 845–858. https://doi.org/10.1080/03650340.2012.683425

    Article  Google Scholar 

  • Yamaç, S.S., (2018) Estimation of long-term reference evapotranspiration using limited weather data in sugar beet plantation area from middle anatolian, Turkey.

  • Yang, Y., Chen, R., Han, C., et al. (2022). Optimal selection of empirical reference evapotranspiration method in 36 different agricultural zones of China. Agronomy, 12, 31. https://doi.org/10.3390/agronomy12010031

    Article  Google Scholar 

  • Yassen, A. N., Nam, W.-H., & Hong, E.-M. (2020). Impact of climate change on reference evapotranspiration in Egypt. Catena, 194, 104711. https://doi.org/10.1016/j.catena.2020.104711

    Article  Google Scholar 

  • Zarghami, M., Abrishamchi, A., & Ardakanian, R. (2008). Multi-criteria Decision Making for Integrated Urban Water Management. Water Resources Management: An International Journal Published for the European Water Resources Association (EWRA), 22(1017), 1029.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the division of agricultural physics at the Indian Agricultural Research Institute (ICAR-IARI), New Delhi, for supplying the meteorological data.

Funding

This research has not received any outside funding.

Author information

Authors and Affiliations

Authors

Contributions

Jitendra Rajput conceptualized, methodology selection and carried formal analysis. Man Singh performed data analysis and graphics preparation. Khajanchi Lal contributed in drafting the manuscript. Manoj Khanna applied the software for analysis. Arjamadutta Sarangi contributed in reviewing the draft. Joydeep Mukherjee performed reviewing and editing. Shrawan Singh participated in the manuscript editing and finalization of the manuscript content. All the authors have contributed significantly to this research work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jitendra Rajput.

Ethics declarations

Conflict of interests

The authors report having no competing interests.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, J., Singh, M., Lal, K. et al. Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate. Environ Dev Sustain 26, 11171–11216 (2024). https://doi.org/10.1007/s10668-023-03234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03234-9

Keywords

Navigation